
Yana K Reshetnyak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12019551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkaline nucleoplasm facilitates contractile gene expression in the mammalian heart. Basic Research in Cardiology, 2022, 117, 17.	5.9	3
2	Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid–base transporters and auto-regulate cardiomyocyte pH. Cardiovascular Research, 2022, 118, 2946-2959.	3.8	2
3	Targeted Suppression of miRNA-33 Using pHLIP Improves Atherosclerosis Regression. Circulation Research, 2022, 131, 77-90.	4.5	23
4	PET Imaging of Acidic Tumor Environment With 89Zr-labeled pHLIP Probes. Frontiers in Oncology, 2022, 12, .	2.8	11
5	pHLIP Peptides Target Acidity in Activated Macrophages. Molecular Imaging and Biology, 2022, 24, 874-885.	2.6	7
6	Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Science Advances, 2021, 7, .	10.3	45
7	Tumor-selective, antigen-independent delivery of a pH sensitive peptide-topoisomerase inhibitor conjugate suppresses tumor growth without systemic toxicity. NAR Cancer, 2021, 3, zcab021.	3.1	16
8	Ex-vivo Imaging of Upper Tract Urothelial Carcinoma Using Novel pH Low Insertion Peptide (Variant 3), a Molecular Imaging Probe. Urology, 2020, 139, 134-140.	1.0	13
9	pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Scientific Reports, 2020, 10, 18356.	3.3	19
10	T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nature Communications, 2020, 11, 4113.	12.8	77
11	Kinetics of pHLIP peptide insertion into and exit from a membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12095-12100.	7.1	14
12	Targeting Acidic Diseased Tissues by pH-Triggered Membrane-Associated Peptide Folding. Frontiers in Bioengineering and Biotechnology, 2020, 8, 335.	4.1	32
13	Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH (Low) Insertion Cycle Peptide. Journal of Nuclear Medicine, 2020, 61, 1361-1368.	5.0	12
14	Acid specific dark quencher QC1 pHLIP for multi-spectral optoacoustic diagnoses of breast cancer. Scientific Reports, 2019, 9, 8550.	3.3	16
15	Mapping pH at Cancer Cell Surfaces. Molecular Imaging and Biology, 2019, 21, 1020-1025.	2.6	17
16	Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight, 2019, 4, .	5.0	46
17	Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. Journal of Clinical Investigation, 2019, 129, 5518-5536.	8.2	92
18	Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2811-E2818.	7.1	92

YANA K RESHETNYAK

#	Article	IF	CITATIONS
19	Decoration of Nanovesicles with pH (Low) Insertion Peptide (pHLIP) for Targeted Delivery. Nanoscale Research Letters, 2018, 13, 391.	5.7	16
20	Bilayer Thickness and Curvature Influence Binding and Insertion of a pHLIP Peptide. Biophysical Journal, 2018, 114, 2107-2115.	0.5	24
21	Membrane-Induced p <i>K</i> _a Shifts in <i>wt</i> -pHLIP and Its L16H Variant. Journal of Chemical Theory and Computation, 2018, 14, 3289-3297.	5.3	33
22	Synthesis and characterization of pHLIP \hat{A}^{\circledast} coated gold nanoparticles. Biochemistry and Biophysics Reports, 2017, 10, 62-69.	1.3	16
23	Applications of pHLIP Technology for Cancer Imaging and Therapy. Trends in Biotechnology, 2017, 35, 653-664.	9.3	90
24	Probe for the measurement of cell surface pH in vivo and ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8177-8181.	7.1	171
25	Insertion into lipid bilayer of truncated pHLIP ® peptide. Biochemistry and Biophysics Reports, 2016, 8, 290-295.	1.3	3
26	Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11829-11834.	7.1	54
27	PET Imaging of Extracellular pH in Tumors with ⁶⁴ Cu- and ¹⁸ F-Labeled pHLIP Peptides: A Structure–Activity Optimization Study. Bioconjugate Chemistry, 2016, 27, 2014-2023.	3.6	52
28	pHLIP Peptide Interaction with a Membrane Monitored by SAXS. Journal of Physical Chemistry B, 2016, 120, 11484-11491.	2.6	30
29	Novel pH-Sensitive Cyclic Peptides. Scientific Reports, 2016, 6, 31322.	3.3	24
30	pH-sensitive pHLIP® coated niosomes. Molecular Membrane Biology, 2016, 33, 51-63.	2.0	19
31	Comparative Study of Tumor Targeting and Biodistribution of pH (Low) Insertion Peptides (pHLIP®) Tj ETQq1 1 686-696.	0.784314 2.6	rgBT /Overlo 33
32	Gold Nanoparticles for Radiation Enhancement. , 2016, 3, .		8
33	Coil-helix transition of polypeptide at water-lipid interface. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P01034.	2.3	10
34	pH (Low) Insertion Peptide targets 4T1 mammary tumors. , 2015, , .		0
35	Advanced targeted nanomedicine. Journal of Biotechnology, 2015, 202, 88-97.	3.8	54
36	Imaging Tumor Acidity: pH-Low Insertion Peptide Probe for Optoacoustic Tomography. Clinical Cancer Research, 2015, 21, 4502-4504.	7.0	27

YANA K RESHETNYAK

#	Article	IF	CITATIONS
37	The pH low insertion peptide pHLIP Variant 3 as a novel marker of acidic malignant lesions. Proceedings of the United States of America, 2015, 112, 9710-9715.	7.1	54
38	Enhancement of radiation effect on cancer cells by gold-pHLIP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5372-5376.	7.1	73
39	Targeting diseased tissues by pHLIP insertion at low cell surface pH. Frontiers in Physiology, 2014, 5, 97.	2.8	74
40	pHLIP-FIRE, a Cell Insertion-Triggered Fluorescent Probe for Imaging Tumors Demonstrates Targeted Cargo Delivery In Vivo. ACS Chemical Biology, 2014, 9, 2545-2553.	3.4	31
41	Understanding the pharmacological properties of a metabolic PET tracer in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7254-7259.	7.1	40
42	Targeting Breast Tumors with pH (Low) Insertion Peptides. Molecular Pharmaceutics, 2014, 11, 2896-2905.	4.6	57
43	Targeting Pancreatic Ductal Adenocarcinoma Acidic Microenvironment. Scientific Reports, 2014, 4, 4410.	3.3	76
44	pH (low) insertion peptide (pHLIP) targets ischemic myocardium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 82-86.	7.1	61
45	pHLIP peptide targets nanogold particles to tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 465-470.	7.1	135
46	pHLIP®-mediated delivery of PEGylated liposomes to cancer cells. Journal of Controlled Release, 2013, 167, 228-237.	9.9	73
47	Antiproliferative Effect of pHLIP-Amanitin. Biochemistry, 2013, 52, 1171-1178.	2.5	62
48	pH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis. Scientific Reports, 2013, 3, 3560.	3.3	45
49	Family of pH (low) insertion peptides for tumor targeting. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5834-5839.	7.1	172
50	In Vivo pH Imaging with 99mTc-pHLIP. Molecular Imaging and Biology, 2012, 14, 725-734.	2.6	60
51	Parking problem and negative cooperativity of binding of myosin subfragment 1 to F-actin. Biochemical and Biophysical Research Communications, 2012, 425, 746-749.	2.1	1
52	Efficient ¹⁸ F-Labeling of Large 37-Amino-Acid pHLIP Peptide Analogues and Their Biological Evaluation. Bioconjugate Chemistry, 2012, 23, 1557-1566.	3.6	60
53	Modulation of the pHLIP Transmembrane Helix Insertion Pathway. Biophysical Journal, 2012, 102, 1846-1855.	0.5	55
54	Tuning a Polar Molecule for Selective Cytoplasmic Delivery by a pH (Low) Insertion Peptide. Biochemistry, 2011, 50, 10215-10222.	2.5	43

YANA K RESHETNYAK

#	Article	IF	CITATIONS
55	Roles of Carboxyl Groups in the Transmembrane Insertion of Peptides. Journal of Molecular Biology, 2011, 413, 359-371.	4.2	60
56	Measuring Tumor Aggressiveness and Targeting Metastatic Lesions with Fluorescent pHLIP. Molecular Imaging and Biology, 2011, 13, 1146-1156.	2.6	94
57	pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Molecular Membrane Biology, 2010, 27, 341-352.	2.0	113
58	pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20246-20250.	7.1	129
59	pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4081-4086.	7.1	143
60	Tuning the insertion properties of pHLIP. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1041-1046.	2.6	61
61	Accurate Analysis of Tumor Margins Using a Fluorescent pH Low Insertion Peptide (pHLIP). International Journal of Molecular Sciences, 2009, 10, 3478-3487.	4.1	28
62	A Novel Technology for the Imaging of Acidic Prostate Tumors by Positron Emission Tomography. Cancer Research, 2009, 69, 4510-4516.	0.9	154
63	Fabrication of semiconductor nanowires by conjugation of quantum dots to actin filaments. Analytical and Bioanalytical Chemistry, 2009, 395, 1563-1566.	3.7	9
64	Algorithm for the Analysis of Tryptophan Fluorescence Spectra and Their Correlation with Protein Structural Parameters. Algorithms, 2009, 2, 1155-1176.	2.1	25
65	Translocating cellâ€impermeable molecules through the plasma membrane of cancer cells. FASEB Journal, 2009, 23, 796.7.	0.5	0
66	Targeting acidic diseased tissue: New technology based on use of the pH (Low) Insertion Peptide (pHLIP). Chimica Oggi, 2009, 27, 34-37.	1.7	35
67	The protein fluorescence and structural toolkit: Database and programs for the analysis of protein fluorescence and structural data. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1744-1754.	2.6	37
68	Bilayer Interactions of pHLIP, a Peptide that Can Deliver Drugs and Target Tumors. Biophysical Journal, 2008, 95, 225-235.	0.5	71
69	Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proceedings of the United States of America, 2008, 105, 15340-15345.	7.1	159
70	Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7893-7898.	7.1	263
71	Mechanism of Formation of Actomyosin Interface. Journal of Molecular Biology, 2007, 365, 551-554.	4.2	12
72	Topography Studies on the Membrane Interaction Mechanism of the Eosinophil Cationic Proteinâ€. Biochemistry, 2007, 46, 720-733.	2.5	80

5

#	Article	IF	CITATIONS
73	A Monomeric Membrane Peptide that Lives in Three Worlds: In Solution, Attached to, and Inserted across Lipid Bilayers. Biophysical Journal, 2007, 93, 2363-2372.	0.5	176
74	Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6460-6465.	7.1	209
75	phâ€Triggered Transport of Molecules into Cells by Transmembrane Helix Insertion. FASEB Journal, 2006, 20, A457.	0.5	Ο
76	Conformational and enzymatic changes of 20S proteasome of rat natural killer cells induced by mono- and divalent cations. Journal of Structural Biology, 2004, 145, 263-271.	2.8	9
77	Folding Kinetics and Structure of OEP16. Biophysical Journal, 2004, 86, 1479-1487.	0.5	29
78	Membrane protein folding: beyond the two stage model. FEBS Letters, 2003, 555, 122-125.	2.8	273
79	Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. I. Decomposition Algorithms. Biophysical Journal, 2001, 81, 1699-1709.	0.5	98
80	Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. II. The Statistical Proof of Discreteness of Tryptophan Classes in Proteins. Biophysical Journal, 2001, 81, 1710-1734.	0.5	136
81	Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. III. Correlation between Fluorescence and Microenvironment Parameters of Individual Tryptophan Residues. Biophysical Journal, 2001, 81, 1735-1758.	0.5	139
82	The interdomain motions in myosin subfragment 1. Biophysical Chemistry, 2001, 94, 41-46.	2.8	1
83	Comparative Study of Recombinant Rat Nucleoside Diphosphate Kinases α and β By Intrinsic Protein Fluorescence. Journal of Biomolecular Structure and Dynamics, 1999, 16, 955-968.	3.5	7
84	Interaction of recombinant rat nucleoside diphosphate kinase α with bleached bovine retinal rod outer segment membranes: A possible mode of pH and salt effects. IUBMB Life, 1997, 41, 189-198.	3.4	3