Anjana Gosain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12019210/publications.pdf Version: 2024-02-01

ANIANA COSAIN

#	Article	IF	CITATIONS
1	Comparison of Density-Based and Distance-Based Outlier Identification Methods in Fuzzy Clustering. Advances in Intelligent Systems and Computing, 2022, , 769-778.	0.6	0
2	GT2FS-SMOTE: An Intelligent Oversampling Approach Based Upon General Type-2 Fuzzy Sets to Detect Web Spam. Arabian Journal for Science and Engineering, 2021, 46, 3033-3050.	3.0	10
3	Mechanism for securing cloud based data warehouse schema. International Journal of Information Technology (Singapore), 2021, 13, 171-184.	2.7	1
4	An effective fuzzy clustering algorithm with outlier identification feature. Journal of Intelligent and Fuzzy Systems, 2021, 41, 2417-2428.	1.4	7
5	Materialized view selection applying differential evolution algorithm combined with ensembled constraint handling techniques. Multimedia Tools and Applications, 2021, 80, 31619.	3.9	2
6	wCM based hybrid pre-processing algorithm for class imbalanced dataset. Journal of Intelligent and Fuzzy Systems, 2021, 41, 3339-3354.	1.4	1
7	An Effective Hybrid Approach for Solving Prioritized Cube Selection Problem Using Particle Swarm Optimization and Tabu Search. Advances in Intelligent Systems and Computing, 2021, , 347-359.	0.6	0
8	Comprehensive complexity metric for data warehouse multidimensional model understandability. IET Software, 2020, 14, 275-282.	2.1	3
9	A New Robust Fuzzy Clustering Approach: DBKIFCM. Neural Processing Letters, 2020, 52, 2189-2210.	3.2	4
10	Materialized View Selection for Query Performance Enhancement Using Stochastic Ranking Based Cuckoo Search Algorithm. International Journal of Reliability, Quality and Safety Engineering, 2020, 27, 2050008.	0.6	5
11	Robust hybrid data-level sampling approach to handle imbalanced data during classification. Soft Computing, 2020, 24, 15715-15732.	3.6	13
12	Random Walk Grey Wolf Optimizer Algorithm for Materialized View Selection (RWGWOMVS). Advances in Computer and Electrical Engineering Book Series, 2020, , 101-122.	0.3	2
13	DKFCM: Kernelized Approach to Density-Oriented Clustering. Advances in Intelligent Systems and Computing, 2019, , 321-331.	0.6	2
14	Selection of materialized views using stochastic ranking based Backtracking Search Optimization Algorithm. International Journal of Systems Assurance Engineering and Management, 2019, 10, 801-810.	2.4	7
15	Handling Constraints Using Penalty Functions in Materialized View Selection. International Journal of Natural Computing Research, 2019, 8, 1-17.	0.5	4
16	FF-SMOTE: A Metaheuristic Approach to Combat Class Imbalance in Binary Classification. Applied Artificial Intelligence, 2019, 33, 420-439.	3.2	23
17	Handling Bitemporal Schema Versions in Multi-temporal Environment for Data Warehouse. Arabian Journal for Science and Engineering, 2019, 44, 3619-3638.	3.0	2
18	Comparison of Different Fuzzy Clustering Algorithms: A Replicated Case Study. Advances in Intelligent Systems and Computing, 2018, , 267-275.	0.6	3

Anjana Gosain

#	Article	IF	CITATIONS
19	Investigating structural metrics for understandability prediction of data warehouse multidimensional schemas using machine learning techniques. Innovations in Systems and Software Engineering, 2018, 14, 59-80.	2.1	2
20	Comparing the Behavior of Oversampling and Undersampling Approach of Class Imbalance Learning by Combining Class Imbalance Problem with Noise. Advances in Intelligent Systems and Computing, 2018, , 23-30.	0.6	68
21	An intelligent undersampling technique based upon intuitionistic fuzzy sets to alleviate class imbalance problem of classification with noisy environment. International Journal of Intelligent Engineering Informatics, 2018, 6, 417.	0.1	0
22	Efficient approach for view materialisation in a data warehouse by prioritising data cubes. IET Software, 2018, 12, 498-506.	2.1	5
23	Materialized View Selection Using Backtracking Search Optimization Algorithm. Advances in Intelligent Systems and Computing, 2018, , 241-251.	0.6	5
24	An intelligent undersampling technique based upon intuitionistic fuzzy sets to alleviate class imbalance problem of classification with noisy environment. International Journal of Intelligent Engineering Informatics, 2018, 6, 417.	0.1	2
25	Object-oriented dynamic complexity measures for software understandability. Innovations in Systems and Software Engineering, 2017, 13, 177-190.	2.1	4
26	Quality metrics emphasizing dimension hierarchy sharing in multidimensional models for data warehouse: a theoretical and empirical evaluation. International Journal of Systems Assurance Engineering and Management, 2017, 8, 1672-1688.	2.4	5
27	Materialized Cube Selection Using Particle Swarm Optimization Algorithm. Procedia Computer Science, 2016, 79, 2-7.	2.0	23
28	Performance Analysis of Various Fuzzy Clustering Algorithms: A Review. Procedia Computer Science, 2016, 79, 100-111.	2.0	88
29	A novel requirements engineering approach for designing data warehouses. International Journal of Systems Assurance Engineering and Management, 2016, 7, 205-221.	2.4	3
30	Bi-temporal schema versioning in bi-temporal data warehouse. CSI Transactions on ICT, 2015, 3, 135-142.	1.0	1
31	Conceptual Multidimensional Modeling for Data Warehouses: A Survey. Advances in Intelligent Systems and Computing, 2015, , 305-316.	0.6	9
32	Dynamic Software Metrics for Object Oriented Software: A Review. Advances in Intelligent Systems and Computing, 2015, , 579-589.	0.6	4
33	Literature Review of Data Model Quality Metrics of Data Warehouse. Procedia Computer Science, 2015, 48, 236-243.	2.0	17
34	Security Issues in Data Warehouse: A Systematic Review. Procedia Computer Science, 2015, 48, 149-157.	2.0	8
35	Multidimensional modeling for data warehouse using object oriented approach. , 2014, , .		2
36	Empirical validation of structural metrics for predicting understandability of conceptual schemas for data warehouse. International Journal of Systems Assurance Engineering and Management, 2014, 5, 291-306.	2.4	13

Anjana Gosain

#	Article	IF	CITATIONS
37	Empirical validation of metrics for object oriented multidimensional model for data warehouse. International Journal of Systems Assurance Engineering and Management, 2014, 5, 262-275.	2.4	16
38	Validating dimension hierarchy metrics for the understandability of multidimensional models for data warehouse. IET Software, 2013, 7, 93-103.	2.1	19
39	Theoretical and empirical validation of comprehensive complexity metric for multidimensional models for data warehouse. International Journal of Systems Assurance Engineering and Management, 2013, 4, 193-204.	2.4	12
40	Robust kernelized approach to clustering by incorporating new distance measure. Engineering Applications of Artificial Intelligence, 2013, 26, 833-847.	8.1	33
41	On completeness and traceability metrics for data warehouse requirements engineering. International Journal of Computational Systems Engineering, 2013, 1, 229.	0.2	5
42	A comprehensive study of view maintenance approaches in data warehousing evolution. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2012, 37, 1-8.	0.7	11
43	Complexity metric for multidimensional models for data warehouse. , 2012, , .		10
44	Quality-oriented requirements engineering approach for data warehouse. International Journal of Computational Systems Engineering, 2012, 1, 127.	0.2	4
45	Predicting quality of data warehouse using fuzzy logic. International Journal of Business and Systems Research, 2012, 6, 255.	0.3	4
46	Hierarchy Classification for Data Warehouse: A Survey. Procedia Technology, 2012, 6, 460-468.	1.1	11
47	Robust Intuitionistic Fuzzy C-means clustering for linearly and nonlinearly separable data. , 2011, , .		17
48	A density oriented fuzzy C-means clustering algorithm for recognising original cluster shapes from noisy data. International Journal of Innovative Computing and Applications, 2011, 3, 77.	0.2	21
49	Assessment of quality of data warehouse multidimensional model. International Journal of Information Quality, 2011, 2, 344.	0.2	12
50	Kernelized type-2 fuzzy c-means clustering algorithm in segmentation of noisy medical images. , 2011, , .		11
51	Quality-oriented requirements engineering for a data warehouse. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2011, 36, 1-4.	0.7	3
52	Quality metrics for conceptual models for data warehouse focusing on dimension hierarchies. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2011, 36, 1-5.	0.7	18
53	Density-oriented approach to identify outliers and get noiseless clusters in Fuzzy C — Means. , 2010, , .		15
54	Stakeholders Driven Requirements Engineering Approach for Data Warehouse Development. Journal of Information Processing Systems, 2010, 6, 385-402.	0.9	12

#	Article	IF	CITATIONS
55	Agent oriented requirements engineering for a data warehouse. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2009, 34, 1-4.	0.7	4
56	Improving the performance of fuzzy clustering algorithms through outlier identification. , 2009, , .		8
57	An approach to engineering the requirements of data warehouses. Requirements Engineering, 2008, 13, 49-72.	3.1	54