Jinsong Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/12018500/jinsong-wu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

118
papers

6,357
citations

46
h-index
g-index

78
g-index

122
ext. papers

7,652
ext. citations
avg, IF

L-index

#	Paper	IF	Citations
118	Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1824-9	6.4	419
117	Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 1992-2000	9.5	309
116	Ternary Metal Phosphide with Triple-Layered Structure as a Low-Cost and Efficient Electrocatalyst for Bifunctional Water Splitting. <i>Advanced Functional Materials</i> , 2016 , 26, 7644-7651	15.6	303
115	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. <i>Joule</i> , 2018 , 2, 184-193	27.8	241
114	Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied Materials & Di</i>	9.5	219
113	Chemical synthesis of gold nanowires in acidic solutions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14442-3	16.4	163
112	Vertical organic nanowire arrays: controlled synthesis and chemical sensors. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3158-9	16.4	144
111	Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. <i>Nature Nanotechnology</i> , 2011 , 7, 24-8	28.7	143
110	Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 274, 816-822	8.9	141
109	Plasmon-mediated synthesis of silver triangular bipyramids. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 7787-91	16.4	141
108	Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. <i>ACS Nano</i> , 2014 , 8, 11560-6	16.7	132
107	The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes. Journal of Physical Chemistry C, 2010 , 114, 21262-21269	3.8	131
106	Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angewandte Chemie - International Edition, 2010 , 49, 4589-92	16.4	130
105	Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119396	21.8	127
104	Coupling Titania Nanotubes and Carbon Nanotubes To Create Photocatalytic Nanocomposites. <i>ACS Catalysis</i> , 2012 , 2, 223-229	13.1	126
103	Adult IDH wild-type lower-grade gliomas should be further stratified. <i>Neuro-Oncology</i> , 2017 , 19, 1327-	13 ₁ 37	121
102	Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. <i>Environmental Science & Environmental &</i>	10.3	120

(2017-2017)

101	Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries. <i>Nano Energy</i> , 2017 , 38, 342-349	17.1	119
100	Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism. <i>ACS Nano</i> , 2016 , 10, 8788-95	16.7	119
99	Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2240-5	11.5	119
98	Combined Toxicity of Nano-ZnO and Nano-TiO2: From Single- to Multinanomaterial Systems. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	114
97	Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13943-8	16.4	105
96	Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. <i>Journal of Power Sources</i> , 2015 , 286, 1-9	8.9	97
95	Construction of evolutionary tree for morphological engineering of nanoparticles. <i>ACS Nano</i> , 2009 , 3, 2191-8	16.7	94
94	Dye stabilization and enhanced photoelectrode wettability in water-based dye-sensitized solar cells through post-assembly atomic layer deposition of TiO2. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11529-32	16.4	89
93	Aqueous Stable TiC MXene Membrane with Fast and Photoswitchable Nanofluidic Transport. <i>ACS Nano</i> , 2018 , 12, 12464-12471	16.7	88
92	Sodium storage in hard carbon with curved graphene platelets as the basic structural units. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3327-3335	13	76
91	3D LITHOGRAPHY. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. <i>Science</i> , 2015 , 348, 1451-5	33.3	73
90	Dynamics of electrochemical lithiation/delithiation of graphene-encapsulated silicon nanoparticles studied by in-situ TEM. <i>Scientific Reports</i> , 2014 , 4, 3863	4.9	70
89	Bringing 5G into Rural and Low-Income Areas: Is It Feasible?. <i>IEEE Communications Standards Magazine</i> , 2017 , 1, 50-57	3.3	69
88	Reconstruction-Determined Alkaline Water Electrolysis at Industrial Temperatures. <i>Advanced Materials</i> , 2020 , 32, e2001136	24	67
87	Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion. <i>Nano Letters</i> , 2017 , 17, 2539-2546	11.5	66
86	Nanocrystals of the Quaternary Thermoelectric Materials: AgPbmSbTem+2 (m = 1🛮8): Phase-Segregated or Solid Solutions?. <i>Advanced Materials</i> , 2008 , 20, 3638-3642	24	63
85	Ab initio phasing of X-ray powder diffraction patterns by charge flipping. <i>Nature Materials</i> , 2006 , 5, 647-	-5.27	63
84	Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 355-363	13	62

83	Decoupled temporal variability and signal synchronization of spontaneous brain activity in loss of consciousness: An fMRI study in anesthesia. <i>NeuroImage</i> , 2016 , 124, 693-703	7.9	60
82	Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene. <i>Advanced Energy Materials</i> , 2015 , 5, 1500646	21.8	60
81	The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas. <i>Acta Neurochirurgica</i> , 2012 , 154, 1361-70; discussion 1370	3	59
80	Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation. <i>Small</i> , 2013 , 9, 1947-53	11	55
79	PVD amorphous carbon coated 3D NiCo2O4 on carbon cloth as flexible electrode for both sodium and lithium storage. <i>Carbon</i> , 2017 , 125, 375-383	10.4	55
78	Ambient oxidation of TiC MXene initialized by atomic defects. <i>Nanoscale</i> , 2019 , 11, 23330-23337	7.7	55
77	High-Voltage Cycling Induced Thermal Vulnerability in LiCoO Cathode: Cation Loss and Oxygen Release Driven by Oxygen Vacancy Migration. <i>ACS Nano</i> , 2020 , 14, 6181-6190	16.7	55
76	Temporal circuit of macroscale dynamic brain activity supports human consciousness. <i>Science Advances</i> , 2020 , 6, eaaz0087	14.3	52
75	NiSe2 pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3981-3986	13	51
74	Altered temporal variance and neural synchronization of spontaneous brain activity in anesthesia. <i>Human Brain Mapping</i> , 2014 , 35, 5368-78	5.9	50
73	Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12328-123	3 ¹⁶ 4	47
72	Revealing the Conversion Mechanism of Transition Metal Oxide Electrodes during Lithiation from First-Principles. <i>Chemistry of Materials</i> , 2017 , 29, 9011-9022	9.6	46
71	Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas. <i>Journal of Clinical Neuroscience</i> , 2013 , 20, 1280-7	2.2	45
70	Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. <i>Cell Reports Physical Science</i> , 2020 , 1, 100241	6.1	42
69	Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. <i>Small</i> , 2013 , 9, 705-10	11	41
68	Post-assembly atomic layer deposition of ultrathin metal-oxide coatings enhances the performance of an organic dye-sensitized solar cell by suppressing dye aggregation. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 5150-9	9.5	37
67	Nanoscale stabilization of new phases in the PbTe-Sb2Te3 system: Pb(m)Sb(2n)Te(m+3n) nanocrystals. <i>Journal of the American Chemical Society</i> , 2013 , 135, 768-74	16.4	37
66	Enveloping SiOx in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13285-13291	13	36

(2018-2020)

65	K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. <i>Energy and Environmental Science</i> , 2020 , 13, 3129-3137	35.4	36
64	Breakdown in the temporal and spatial organization of spontaneous brain activity during general anesthesia. <i>Human Brain Mapping</i> , 2018 , 39, 2035-2046	5.9	34
63	Biomarker-based prognostic stratification of young adult glioblastoma. <i>Oncotarget</i> , 2016 , 7, 5030-41	3.3	34
62	Cubic form of Pb(2-x)Sn(x)S2 stabilized through size reduction to the nanoscale. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3228-33	16.4	31
61	In-situ growth of graphene decorated Ni3S2 pyramids on Ni foam for high-performance overall water splitting. <i>Applied Surface Science</i> , 2019 , 465, 772-779	6.7	30
60	Spectroscopic Characterization of TiO2 Polymorphs in Wastewater Treatment and Sediment Samples. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 12-18	11	29
59	Diffractive electron imaging of nanoparticles on a substrate. <i>Nature Materials</i> , 2005 , 4, 912-6	27	27
58	Reorganization of cerebro-cerebellar circuit in patients with left hemispheric gliomas involving language network: A combined structural and resting-state functional MRI study. <i>Human Brain Mapping</i> , 2018 , 39, 4802-4819	5.9	26
57	An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning. <i>Scientific Reports</i> , 2017 , 7, 13769	4.9	25
56	Strain-Induced Metastable Phase Stabilization in GaO Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5536-5543	9.5	25
55	Synergistic sodiation of cobalt oxide nanoparticles and conductive carbon nanotubes (CNTs) for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8669-8675	13	24
54	Origin of Fracture-Resistance to Large Volume Change in Cu-Substituted Co O Electrodes. <i>Advanced Materials</i> , 2018 , 30, 1704851	24	23
53	Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 19979-86	9.5	22
52	Revealing the Effects of Electrode Crystallographic Orientation on Battery Electrochemistry via the Anisotropic Lithiation and Sodiation of ReS. <i>ACS Nano</i> , 2018 , 12, 7875-7882	16.7	21
51	Disrupted neural variability during propofol-induced sedation and unconsciousness. <i>Human Brain Mapping</i> , 2018 , 39, 4533-4544	5.9	21
50	Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages. <i>Human Brain Mapping</i> , 2015 , 36, 49	7 <i>2</i> -85	21
49	Surface Oxidation Layer-Mediated Conformal Carbon Coating on Si Nanoparticles for Enhanced Lithium Storage. <i>ACS Applied Materials & District Materials & Material</i>	9.5	21
48	Dynamic imaging of metastable reaction pathways in lithiated cobalt oxide electrodes. <i>Nano Energy</i> , 2018 , 44, 15-22	17.1	20

47	Altered Global Brain Signal during Physiologic, Pharmacologic, and Pathologic States of Unconsciousness in Humans and Rats. <i>Anesthesiology</i> , 2020 , 132, 1392-1406	4.3	19
46	Synthesis and electrochemical performance of vertical carbon nanotubes on few-layer graphene as an anode material for Li-ion batteries. <i>Materials Chemistry and Physics</i> , 2018 , 205, 359-365	4.4	18
45	Not all 1p/19q non-codeleted oligodendroglial tumors are astrocytic. <i>Oncotarget</i> , 2016 , 7, 64615-64630) 3.3	17
44	Size as a Parameter to Stabilize New Phases: Rock Salt Phases of Pb(m)Sb(2n)Se(m+3n). <i>Journal of the American Chemical Society</i> , 2015 , 137, 9937-42	16.4	16
43	Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage. <i>Nano Energy</i> , 2020 , 73, 104758	17.1	15
42	Resting-state functional connectivity predicts individual language impairment of patients with left hemispheric gliomas involving language network. <i>NeuroImage: Clinical</i> , 2019 , 24, 102023	5.3	15
41	High-Surface-Area Antimony Sulfide Chalcogels. <i>Chemistry of Materials</i> , 2016 , 28, 7744-7749	9.6	15
40	Coordination engineering of metal single atom on carbon for enhanced and robust potassium storage. <i>Matter</i> , 2021 ,	12.7	14
39	Transcortical insular glioma resection: clinical outcome and predictors. <i>Journal of Neurosurgery</i> , 2018 , 131, 706-716	3.2	14
38	Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy. <i>Nanotechnology</i> , 2016 , 27, 085402	3.4	12
37	In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS Nanoflakes: Implications for Lithium-Ion and Sodium-Ion Batteries. <i>Small</i> , 2021 , 17, e2100637	11	12
36	A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries. <i>Carbon</i> , 2021 , 178, 443-450	10.4	12
35	Dimensionally Controlled Lithiation of Chromium Oxide. <i>Chemistry of Materials</i> , 2016 , 28, 47-54	9.6	11
34	Tumor grade-related language and control network reorganization in patients with left cerebral glioma. <i>Cortex</i> , 2020 , 129, 141-157	3.8	10
33	Electron Tomography of Au-Catalyzed Semiconductor Nanowires. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1059-1063	3.8	10
32	Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. <i>Angewandte Chemie</i> , 2021 , 133, 12436-12442	3.6	10
31	Ligand and Anion Co-Leaching Induced Complete Reconstruction of Polyoxomolybdate-Organic Complex Oxygen-Evolving Pre-Catalysts. <i>Advanced Functional Materials</i> , 2021 , 31, 2101792	15.6	10
30	The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas. <i>International Journal of Neuroscience</i> , 2016 , 126, 53-61	2	9

29	Ultra-Fast and In-Depth Reconstruction of Transition Metal Fluorides in Electrocatalytic Hydrogen Evolution Processes. <i>Advanced Science</i> , 2021 , e2103567	13.6	9
28	Phase stability and photoactivity of CuO modified titania nanotube prepared by hydrothermal method. <i>Journal of Molecular Catalysis A</i> , 2015 , 402, 23-28		7
27	Tunable Ru-Ru 2 P heterostructures with charge redistribution for efficient pH-universal hydrogen evolution. <i>Informa</i> Materilly,	23.1	7
26	Thin Film RuO2 Lithiation: Fast Lithium-Ion Diffusion along the Interface. <i>Advanced Functional Materials</i> , 2018 , 28, 1805723	15.6	7
25	Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	6
24	Long-Term Functional and Oncologic Outcomes of Glioma Surgery with and without Intraoperative Neurophysiologic Monitoring: A Retrospective Cohort Study in a Single Center. <i>World Neurosurgery</i> , 2018 , 119, e94-e105	2.1	6
23	A Durable Ni-Zn Microbattery with Ultrahigh-Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. <i>Small</i> , 2021 , 17, e2103136	11	5
22	Suppressing the Jahn Teller Effect in Mn-Based Layered Oxide Cathode toward Long-Life Potassium-Ion Batteries. <i>Advanced Functional Materials</i> , 2022 , 32, 2108244	15.6	5
21	Combination of Magnetic Resonance Spectroscopy and IIC-Methionine Positron Emission Tomography for the Accurate Diagnosis of Non-Enhancing Supratentorial Glioma. <i>Korean Journal of Radiology</i> , 2019 , 20, 967-975	6.9	4
20	Construction of an organic crystal structural model based on combined electron and powder X-ray diffraction data and the charge flipping algorithm. <i>Ultramicroscopy</i> , 2011 , 111, 812-6	3.1	4
19	Ultralow Ru-assisted and vanadium-doped flower-like CoP/Ni2P heterostructure for efficient water splitting in alkali and seawater. <i>Journal of Materials Chemistry A</i> ,	13	4
18	2018,		4
17	Direct Visualization of Atomic-Scale Heterogeneous Structure Dynamics in MnO Nanowires. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 33644-33651	9.5	4
16	Solid Solution of Bi and Sb for Robust Lithium Storage Enabled by Consecutive Alloying Reaction. <i>Small</i> , 2021 , 17, e2102915	11	4
15	Unraveling the reaction mechanisms of electrode materials for sodium-ion and potassium-ion batteries by in situ transmission electron microscopy		4
14	Lithium Electrochemistry of WS2 Nanoflakes Studied by In-situ TEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1860-1861	0.5	3
13	Solvent-Free Encapsulation of Ultrafine SnO2 Nanoparticles in N-Doped Carbon for High-Capacity and Durable Lithium Storage. <i>ACS Applied Energy Materials</i> , 2021 , 4, 6277-6283	6.1	3
12	Interfacial gliding-driven lattice oxygen release in layered cathodes. <i>Cell Reports Physical Science</i> , 2022 , 3, 100695	6.1	2

Functional near-infrared spectroscopy for intraoperative brain mapping. *Neurophotonics*, **2019**, 6, 04501<u>9</u>.9

10	Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. <i>Cell Reports</i> , 2021 , 37, 109873	10.6	2
9	Reaction Mechanism and Kinetic of Graphene Supported Co3O4 Nanocubes with Lithium and Magnesium Studied by in situ TEM. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1197-1198	0.5	1
8	Automated Electron Nanocrystallography. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1026, 1		1
7	A Strain-Relaxation Red Phosphorus Freestanding Anode for Non-Aqueous Potassium Ion Batteries. <i>Advanced Energy Materials</i> ,2103343	21.8	1
6	Serial cracking in Van der Waals layered electrodes mediated by electrochemical reaction and mechanical deformation. <i>Cell Reports Physical Science</i> , 2021 , 2, 100642	6.1	1
5	Multivariate machine learning-based language mapping in glioma patients based on lesion topography. <i>Brain Imaging and Behavior</i> , 2021 , 15, 2552-2562	4.1	1
4	Longitudinal assessment of network reorganizations and language recovery in postoperative patients with glioma <i>Brain Communications</i> , 2022 , 4, fcac046	4.5	O
3	Real-time Observation of Electrochemical Sodiation of C03O4/CNTS by in-situ Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1811-1812	0.5	
2	Atomic-resolution in-situ TEM Studies of Lithium Electrochemistry in Co3O4-Carbon Nanotube Nanocomposite. <i>Microscopy and Microanalysis</i> , 2016 , 22, 762-763	0.5	
1	Electrical stimulation-induced speech-related negative motor responses in the lateral frontal cortex <i>Journal of Neurosurgery</i> , 2021 , 1-9	3.2	