Sue Ann Bidstrup Allen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/12017328/sue-ann-bidstrup-allen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37 papers	822	15	28
	citations	h-index	g-index
38	899	3.3	3.34
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
37	Vertically integrated high voltage Zn-Air batteries enabled by stacked multilayer electrodeposition. Journal of Power Sources, 2020 , 449, 227566	8.9	1
36	3D lithium ion battery fabrication via scalable stacked multilayer electrodeposition. <i>Journal of Micromechanics and Microengineering</i> , 2019 , 29, 055006	2	2
35	Model-assisted development of microfabricated 3D Ni(OH) 2 electrodes with rapid charging capabilities. <i>Journal of Power Sources</i> , 2017 , 358, 101-111	8.9	5
34	Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices. <i>Microsystems and Nanoengineering</i> , 2015 , 1,	7.7	59
33	A MEMS-enabled biodegradable battery for powering transient implantable devices 2014,		15
32	. Journal of Microelectromechanical Systems, 2014 , 23, 1281-1289	2.5	13
31	Enhanced photo-patterning of polymer dielectrics via imprint lithography. <i>Microelectronic Engineering</i> , 2012 , 93, 19-26	2.5	3
30	Electroless Deposition of Copper on Organic and Inorganic Substrates Using a Sn/Ag Catalyst. Journal of the Electrochemical Society, 2012 , 159, D386-D392	3.9	22
29	Imprint lithography enabling ultra-low loss coaxial interconnects. <i>Microelectronic Engineering</i> , 2011 , 88, 240-246	2.5	5
28	Photodefinable Epoxycyclohexyl Polyhedral Oligomeric Silsesquioxane. <i>Journal of Electronic Materials</i> , 2010 , 39, 149-156	1.9	9
27	Aqueous-Develop, Photosensitive Polynorbornene Dielectric: Properties and Characterization. <i>Journal of Electronic Materials</i> , 2009 , 38, 778-786	1.9	16
26	Adhesion Enhancement Between Electroless Copper and Epoxy-based Dielectrics. <i>IEEE Transactions on Advanced Packaging</i> , 2009 , 32, 758-767		15
25	All-Copper Chip-to-Substrate Interconnects Part II. Modeling and Design. <i>Journal of the Electrochemical Society</i> , 2008 , 155, D314	3.9	15
24	Air-Gaps for High-Performance On-Chip Interconnect Part II: Modeling, Fabrication, and Characterization. <i>Journal of Electronic Materials</i> , 2008 , 37, 1534-1546	1.9	6
23	Air-Gaps for High-Performance On-Chip Interconnect Part I: Improvement in Thermally Decomposable Template. <i>Journal of Electronic Materials</i> , 2008 , 37, 1524-1533	1.9	11
22	UV-induced porosity using photogenerated acids to catalyze the decomposition of sacrificial polymers templated in dielectric films. <i>Journal of Materials Chemistry</i> , 2007 , 17, 873-885		7
21	Electron-beam hardening of thin films of functionalized polynorbornene copolymer. <i>Journal of Electronic Materials</i> , 2006 , 35, 1112-1121	1.9	4

Low-Temperature Bonding of Copper Pillars for All-Copper Chip-to-Substrate Interconnections. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, C192		30
Plasma Treatment and Surface Analysis of Polyimide Films for Electroless Copper Buildup Process. Journal of the Electrochemical Society, 2005 , 152, F162	3.9	40
Improved fabrication of micro air-channels by incorporation of a structural barrier. <i>Journal of Micromechanics and Microengineering</i> , 2005 , 15, 35-42	2	31
Hydrophobic/hydrophilic surface modification within buried air channels. <i>Journal of Vacuum Science</i> & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004 , 22, 953		10
Crosslinking and decomposition reactions of epoxide-functionalized polynorbornene. II. Impact of reactions on mechanical properties. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 1020-1029	2.9	11
Photosensitive polynorbornene based dielectric. II. Sensitivity and spatial resolution. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 3031-3039	2.9	12
Photosensitive polynorbornene based dielectric. I. Structure property relationships. <i>Journal of Applied Polymer Science</i> , 2004 , 91, 3023-3030	2.9	21
Photoinitiation systems and thermal decomposition of photodefinable sacrificial materials. <i>Journal of Applied Polymer Science</i> , 2003 , 88, 1186-1195	2.9	9
Crosslinking and decomposition reactions of epoxide functionalized polynorbornene. Part I. FTIR and thermogravimetric analysis. <i>Journal of Applied Polymer Science</i> , 2003 , 89, 568-577	2.9	43
Fabrication of Microchannels Using Polynorbornene Photosensitive Sacrificial Materials. <i>Journal of the Electrochemical Society</i> , 2003 , 150, H205	3.9	26
Chemically Bonded Porogens in Methylsilsesquioxane. <i>Journal of the Electrochemical Society</i> , 2002 , 149, F161	3.9	43
Chemically Bonded Porogens in Methylsilsesquioxane. <i>Journal of the Electrochemical Society</i> , 2002 , 149, F171	3.9	23
Lithographic Characteristics and Thermal Processing of Photosensitive Sacrificial Materials. <i>Journal of the Electrochemical Society</i> , 2002 , 149, G555	3.9	11
Porous Methylsilsesquioxane for Low-k Dielectric Applications. <i>Electrochemical and Solid-State Letters</i> , 2001 , 4, F25		55
Comparison of plasma chemistries and structure-property relationships of fluorocarbon films deposited from octafluorocyclobutane and pentafluoroethane monomers. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics</i>		18
Frocessing and Phenomena, 2001, 19, 439 Fabrication of microchannels using polycarbonates as sacrificial materials. <i>Journal of Micromechanics and Microengineering</i> , 2001, 11, 733-737	2	78
Dual capacitor technique for measurement of through-plane modulus of thin polymer films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2000 , 38, 1634-1644	2.6	12
In situ measurement of the thermal expansion behavior of benzocyclobutene films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 1999 , 37, 311-321	2.6	12
	Electrochemical and Solid-State Letters, 2006, 9, C192 Plasma Treatment and Surface Analysis of Polyimide Films for Electroless Copper Buildup Process. Journal of the Electrochemical Society, 2005, 152, F162 Improved fabrication of micro air-channels by incorporation of a structural barrier. Journal of Micromechanics and Microengineering, 2005, 15, 35-42 Improved fabrication of micro air-channels by incorporation of a structural barrier. Journal of Micromechanics and Microengineering, 2005, 15, 35-42 Improved fabrication of micro air-channels by incorporation of a structural barrier. Journal of Microencedance and Microengineering, 2005, 15, 35-42 Improved fabrication of micro air-channels by incorporation of a structural barrier. Journal of Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 953 Crosslinking and decomposition reactions of epoxide-functionalized polynorbornene. II. Impact of reactions on mechanical properties. Journal of Applied Polymer Science, 2004, 91, 3031-3039 Photosensitive polynorbornene based dielectric. I. StructureBroperty relationships. Journal of Applied Polymer Science, 2004, 91, 3023-3030 Photosensitive polynorbornene based dielectric. I. StructureBroperty relationships. Journal of Applied Polymer Science, 2004, 91, 3023-3030 Photosensitive polynorbornene based dielectric. I. StructureBroperty relationships. Journal of Applied Polymer Science, 2004, 91, 3023-3030 Photosensitive polynorbornene based dielectric. I. StructureBroperty relationships. Journal of Applied Polymer Science, 2004, 91, 3023-3030 Photosensitive polynorbornene Photosensitive Sacrificial materials. Journal of Applied Polymer Science, 2003, 89, 568-577 Fabrication of Microchannels Using Polynorbornene Photosensitive Sacrificial Materials. Journal of the Electrochemical Society, 2002, 149, F161 Chemically Bonded Porogens in Methylsilsesquioxane. Journal of the Electrochemical Society, 2002, 149, F151 Lithographic Characteristics and Thermal Processing of Photosensitive Sacrificial	Plasma Treatment and Sulface Analysis of Polyimide Films for Electroless Copper Buildup Process. Journal of the Electrochemical Society, 2005, 152, F162 Improved Fabrication of micro air-channels by incorporation of a structural barrier. Journal of Micromechanics and Microengineering, 2005, 153, 35-42 Hydrophobic/hydrophilic surface modification within buried sir channels. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 953 Crosslinking and decomposition reactions of epoxide-functionalized polynorbornene. II. Impact of reactions on mechanical properties. Journal of Applied Polymer Science, 2004, 91, 1020-1029 Photosensitive polynorbornene based dielectric. II. Sensitivity and spatial resolution. Journal of Applied Polymer Science, 2004, 91, 3031-3039 Photosensitive polynorbornene based dielectric. II. StructureBroperty relationships. Journal of Applied Polymer Science, 2004, 91, 3023-3030 Photosinitiation systems and thermal decomposition of photodefinable sacrificial materials. Journal of Applied Polymer Science, 2003, 88, 1186-1195 Crosslinking and decomposition reactions of epoxide functionalized polynorbornene. Part I. FTIR and thermogravimetric analysis. Journal of Applied Polymer Science, 2003, 89, 568-577 2-9 Crosslinking and decomposition reactions of epoxide functionalized polynorbornene. Part I. FTIR and thermogravimetric analysis. Journal of Applied Polymer Science, 2003, 89, 568-577 2-9 Chemically Bonded Porogens in Methylsilsesquioxane. Journal of the Electrochemical Society, 2002, 149, F161 Chemically Bonded Porogens in Methylsilsesquioxane. Journal of the Electrochemical Society, 2002, 149, F171 Lithographic Characteristics and Thermal Processing of Photosensitive Sacrificial Materials. Journal of the Electrochemical Society, 2002, 149, G555 Porous Methylsilsesquioxane for Low-k Dielectric Applications. Electrochemical and Solid-State Letters, 2001, 4, F25 Comparison of plasma chemist

Functionalized polynorbornene dielectric polymers: Adhesion and mechanical properties. *Journal of Polymer Science, Part B: Polymer Physics,* **1999**, 37, 3003-3010

Functionalized polynorbornene dielectric polymers: Adhesion and mechanical properties 1999, 37, 3003

7