
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12016862/publications.pdf Version: 2024-02-01

Ι ίνα νι Δνι

#	Article	IF	CITATIONS
1	A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018, 38, 4161-4164.	2.8	251
2	Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C. Journal of the American Ceramic Society, 1998, 81, 3341-3344.	1.9	234
3	Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sensors and Actuators A: Physical, 2002, 95, 120-134.	2.0	172
4	Fabrication of layered Ti ₃ C ₂ with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 7870-7876.	5.2	167
5	Newtonian Viscosity of Amorphous Silicon Carbonitride at High Temperature. Journal of the American Ceramic Society, 1998, 81, 1349-1352.	1.9	162
6	Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry A, 2015, 3, 12284-12296.	5.2	144
7	Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique. Sensors and Actuators A: Physical, 2001, 89, 64-70.	2.0	143
8	Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor. Chemical Physics Letters, 2004, 383, 441-444.	1.2	135
9	A Silicon Carbonitride Ceramic with Anomalously High Piezoresistivity. Journal of the American Ceramic Society, 2008, 91, 1346-1349.	1.9	122
10	Polymer-derived SiAlCN ceramics resist oxidation at 1400°C. Scripta Materialia, 2006, 55, 295-297.	2.6	113
11	Soluble and Meltable Hyperbranched Polyborosilazanes toward High-Temperature Stable SiBCN Ceramics. ACS Applied Materials & Interfaces, 2015, 7, 6733-6744.	4.0	110
12	Silicoboron–carbonitride ceramics: A class of high-temperature, dopable electronic materials. Applied Physics Letters, 2001, 78, 3076-3078.	1.5	109
13	Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing. Wear, 2011, 271, 1940-1945.	1.5	109
14	Damage-resistant alumina-based layer composites. Journal of Materials Research, 1996, 11, 204-210.	1.2	107
15	Oxidation Kinetics of an Amorphous Silicon Carbonitride Ceramic. Journal of the American Ceramic Society, 2001, 84, 1803-1810.	1.9	96
16	Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. Journal of Materials Science, 2010, 45, 4431-4438.	1.7	93
17	Facilitating Anion Transport in Polyolefin-Based Anion Exchange Membranes via Bulky Side Chains. ACS Applied Materials & Interfaces, 2016, 8, 23321-23330.	4.0	91
18	Oxidation Behavior of a Fully Dense Polymerâ€Derived Amorphous Silicon Carbonitride Ceramic. Journal of the American Ceramic Society, 2004, 87, 483-486.	1.9	88

#	Article	IF	CITATIONS
19	R -Curve Behavior of In-Situ -Toughened Al2 O3 :CaAl12 O19 Ceramic Composites. Journal of the American Ceramic Society, 1996, 79, 3142-3148.	1.9	84
20	Structure and Electronic Transport Properties of Siâ€(B) â€N Ceramics. Journal of the American Ceramic Society, 2001, 84, 2260-2264.	1.9	84
21	Morphology Control in the Vaporâ^'Liquidâ^'Solid Growth of SiC Nanowires. Crystal Growth and Design, 2008, 8, 3893-3896.	1.4	78
22	Optical properties of single-crystalline α-Si3N4 nanobelts. Applied Physics Letters, 2005, 86, 061908.	1.5	77
23	Structural Evolution of Polymer-Derived Amorphous SiBCN Ceramics at High Temperature. Journal of Physical Chemistry C, 2011, 115, 24993-25000.	1.5	77
24	Temperature sensor made of polymer-derived ceramics for high-temperature applications. Sensors and Actuators A: Physical, 2014, 219, 58-64.	2.0	76
25	Ultra-Long Single-Crystalline alpha-Si3N4 Nanowires: Derived from a Polymeric Precursor. Journal of the American Ceramic Society, 2005, 88, 1647-1650.	1.9	75
26	Mullite whisker reinforced porous anorthite ceramics with low thermal conductivity and high strength. Journal of the European Ceramic Society, 2016, 36, 761-765.	2.8	73
27	Oxidation/Corrosion of Polymer-Derived SiAlCN Ceramics in Water Vapor. Journal of the American Ceramic Society, 2006, 89, 1079-1082.	1.9	71
28	Silicoaluminum carbonitride ceramic resist to oxidation/corrosion in water vapor. Journal of Materials Research, 2006, 21, 1625-1628.	1.2	71
29	Oxidation of Polymer-Derived SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 3075-3080.	1.9	70
30	A Novel Oscillatory Pressureâ€Assisted Hot Pressing for Preparation of Highâ€Performance Ceramics. Journal of the American Ceramic Society, 2014, 97, 1012-1015.	1.9	70
31	Phase Transformation in Nanometer-Sized gamma-Alumina by Mechanical Milling. Journal of the American Ceramic Society, 2005, 88, 780-783.	1.9	69
32	Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramics. Journal of the American Ceramic Society, 2005, 88, 2415-2419.	1.9	69
33	Magnetoceramics from the Bulk Pyrolysis of Polysilazane Cross-Linked by Polyferrocenylcarbosilanes with Hyperbranched Topology. ACS Applied Materials & Interfaces, 2013, 5, 10367-10375.	4.0	68
34	Application of microforging to SiCN MEMS fabrication. Sensors and Actuators A: Physical, 2002, 95, 143-151.	2.0	66
35	Effect of Thermal Initiator Concentration on the Electrical Behavior of Polymerâ€Derived Amorphous Silicon Carbonitrides. Journal of the American Ceramic Society, 2008, 91, 3971-3975.	1.9	66
36	Ultraviolet photoluminescence from 3C-SiC nanorods. Applied Physics Letters, 2006, 89, 143101.	1.5	63

#	Article	IF	CITATIONS
37	SiC whisker reinforced ZrO 2 composites prepared by flash-sintering. Journal of the European Ceramic Society, 2016, 36, 2051-2055.	2.8	63
38	Quantitative study on structural evolutions and associated energetics in polysilazane-derived amorphous silicon carbonitride ceramics. Acta Materialia, 2014, 72, 22-31.	3.8	62
39	Electron Transport in Polymerâ€Derived Amorphous Silicon Oxycarbonitride Ceramics. Journal of the American Ceramic Society, 2009, 92, 1603-1606.	1.9	61
40	Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. Journal of the European Ceramic Society, 2017, 37, 3973-3980.	2.8	60
41	Ultrafast synthesis of entropy-stabilized oxide at room temperature. Journal of the European Ceramic Society, 2020, 40, 2504-2508.	2.8	60
42	Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications. Journal of Materials Chemistry A, 2016, 4, 4797-4807.	5.2	58
43	Comparison of Computed Tomographic and Standard Radiographic Determination of Tibial Torsion in the Dog. Veterinary Surgery, 2005, 34, 457-462.	0.5	57
44	Controlled Al-Doped Single-Crystalline 6 <i>H</i> -SiC Nanowires. Crystal Growth and Design, 2008, 8, 1461-1464.	1.4	57
45	Effect of ceramic nanoparticle reinforcements on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites. Journal of Materials Research, 2013, 28, 1835-1852.	1.2	57
46	Effect of pyrolysis temperature on the electric conductivity of polymer-derived silicoboron carbonitride. Journal of the European Ceramic Society, 2014, 34, 2163-2167.	2.8	56
47	Frequency-dependent conductive behavior of polymer-derived amorphous silicon carbonitride. Acta Materialia, 2015, 89, 215-224.	3.8	54
48	Polymer-Derived Ceramic Composite Fibers with Aligned Pristine Multiwalled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2010, 2, 1150-1156.	4.0	53
49	Evanescent-mode-resonator-based and antenna-integrated wireless passive pressure sensors for harsh-environment applications. Sensors and Actuators A: Physical, 2014, 220, 22-33.	2.0	52
50	On electric conduction of amorphous silicon carbonitride derived from a polymeric precursor. Applied Physics Letters, 2013, 102, .	1.5	51
51	Synthesis of midblock-quaternized triblock copolystyrenes as highly conductive and alkaline-stable anion-exchange membranes. Polymer Chemistry, 2017, 8, 2074-2086.	1.9	51
52	Highâ€entropy oxides based on valence combinations: design and practice. Journal of the American Ceramic Society, 2021, 104, 1953-1958.	1.9	50
53	Stress-dependent piezoresistivity of tunneling-percolation systems. Journal of Materials Science, 2009, 44, 2814-2819.	1.7	45
54	Controlled Al-Doped Single-Crystalline Silicon Nitride Nanowires Synthesized via Pyrolysis of Polymer Precursors. Journal of Physical Chemistry B, 2007, 111, 4156-4160.	1.2	44

#	Article	IF	CITATIONS
55	Superhydrophobic Mats of Polymerâ€Derived Ceramic Fibers. Journal of the American Ceramic Society, 2008, 91, 2751-2755.	1.9	44
56	Oxidation Behavior of <scp><scp>ZrB₂–SiC–TaC</scp></scp> Ceramics. Journal of the American Ceramic Society, 2012, 95, 374-378.	1.9	44
57	Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna. Applied Physics Letters, 2013, 103, .	1.5	43
58	Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic. Journal of Materials Science and Technology, 2017, 33, 897-900.	5.6	43
59	Preparation of Al2O3–Y3Al5O12–ZrO2 eutectic ceramic by flash sintering. Scripta Materialia, 2016, 114, 108-111.	2.6	42
60	Oscillating pressure sintering of W–Ni–Fe refractory alloy. Journal of Alloys and Compounds, 2019, 805, 789-793.	2.8	41
61	Effect of Pyrolysis Temperature on the Piezoresistivity of Polymerâ€Derived Ceramics. Journal of the American Ceramic Society, 2011, 94, 359-362.	1.9	40
62	Wireless Passive Temperature Sensors Using Integrated Cylindrical Resonator/Antenna for Harsh-Environment Applications. IEEE Sensors Journal, 2015, 15, 1453-1462.	2.4	40
63	Reversible flash-bonding of zirconia and nickel alloys. Scripta Materialia, 2018, 153, 31-34.	2.6	40
64	Fabrication of high-entropy perovskite oxide by reactive flash sintering. Ceramics International, 2020, 46, 18358-18361.	2.3	39
65	Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42, 2899-2903.	2.3	38
66	Preferred Orientation of SiC Nanowires Induced by Substrates. Journal of Physical Chemistry C, 2010, 114, 2591-2594.	1.5	37
67	Synthesis of Mg–Al2O3 nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 2013, 563, 165-170.	2.8	37
68	Sintering of Highâ€Performance Silicon Nitride Ceramics Under Vibratory Pressure. Journal of the American Ceramic Society, 2015, 98, 698-701.	1.9	37
69	Dry sliding wear behavior of Mg-SiC nanocomposites with high volume fractions of reinforcement. Materials Letters, 2018, 228, 112-115.	1.3	35
70	Phase Transformation of Mechanically Milled Nano-Sized gamma-Alumina. Journal of the American Ceramic Society, 2005, 88, 2559-2563.	1.9	34
71	Mass production of very thin single-crystal silicon nitride nanobelts. Journal of Solid State Chemistry, 2008, 181, 211-215.	1.4	34
72	Effect of Pyrolysis Temperature on the Structure and Conduction of Polymerâ€Derived SiC. Journal of the American Ceramic Society, 2014, 97, 2135-2138.	1.9	34

#	Article	IF	CITATIONS
73	Growth of platelike and branched single-crystalline Si3N4 whiskers. Solid State Communications, 2004, 132, 263-268.	0.9	33
74	Aligned ultra-long single-crystalline α <i>-</i> Si ₃ N ₄ nanowires. Nanotechnology, 2008, 19, 105602.	1.3	33
75	Giant piezoresistivity in polymer-derived amorphous SiAlCO ceramics. Journal of Materials Science, 2016, 51, 5646-5650.	1.7	33
76	Si <scp>CNO</scp> – <scp>GO</scp> composites with the negative temperature coefficient of resistance for highâ€ŧemperature sensor applications. Journal of the American Ceramic Society, 2017, 100, 592-601.	1.9	33
77	Formation of Silicon-Doped Boron Nitride Bamboo Structures Via Pyrolysis of a Polymeric Precursor. Journal of the American Ceramic Society, 2006, 89, 740-742.	1.9	32
78	Optical Properties of Heavily Alâ€Doped Singleâ€Crystal Si ₃ N ₄ Nanobelts. Journal of the American Ceramic Society, 2010, 93, 1364-1367.	1.9	32
79	Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics. International Journal of Energy Production and Management, 2015, 2, 239-244.	1.9	32
80	Oscillatory pressure sintering of Al2O3 ceramics. Ceramics International, 2020, 46, 15670-15673.	2.3	32
81	Oxidation behaviour of ZrB2–SiC (Al/Y) ceramics at 1700 °C. Journal of the European Ceramic Society, 2016, 36, 3769-3774.	2.8	31
82	Highâ€Strength Alumina/Alumina:Calciumâ€Hexaluminate Layer Composites. Journal of the American Ceramic Society, 1998, 81, 3321-3324.	1.9	30
83	Self-assembled carbon–silicon carbonitride nanocomposites: high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 18186.	6.7	30
84	Thermal Expansion of Al Matrix Composites Reinforced with Hybrid Micro-/nano-sized Al2O3 Particles. Journal of Materials Science and Technology, 2014, 30, 61-64.	5.6	30
85	Ostwald Ripening Growth of Silicon Nitride Nanoplates. Crystal Growth and Design, 2010, 10, 29-31.	1.4	29
86	Near-Field Electrospray Microprinting of Polymer-Derived Ceramics. Journal of Microelectromechanical Systems, 2013, 22, 1-3.	1.7	29
87	Complex Impedance Spectra of Polymerâ€Derived Silicon Oxycarbides. Journal of the American Ceramic Society, 2013, 96, 1363-1365.	1.9	29
88	Screening Sintering Aids for (K _{0.5} Na _{0.5})NbO ₃ Ceramics. Journal of the American Ceramic Society, 2015, 98, 1698-1701.	1.9	29
89	High-entropy stoichiometric perovskite oxides based on valence combinations. Ceramics International, 2021, 47, 24348-24352.	2.3	29
90	Synthesis, Characterization, and Optical Properties of Pristine and Doped Yttrium Aluminum Garnet Nanopowders. Journal of the American Ceramic Society, 2005, 88, 284-286.	1.9	28

#	Article	IF	CITATIONS
91	Quantitative Raman Analysis of Free Carbon in Polymerâ€Derived Ceramics. Journal of the American Ceramic Society, 2009, 92, 2455-2458.	1.9	27
92	Characterization of SiCN Ceramic Material Dielectric Properties at High Temperatures for Harsh Environment Sensing Applications. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 960-971.	2.9	27
93	Effect of holding time on the microstructure and properties of flash-sintered Y2O3-doped ZrO2. Ceramics International, 2016, 42, 17442-17446.	2.3	27
94	Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceramics International, 2020, 46, 13240-13243.	2.3	27
95	Oscillatory pressure sintering of WC-Fe-Ni cemented carbides. Ceramics International, 2020, 46, 12727-12731.	2.3	27
96	ZrB2–SiC(Al) ceramics with high resistance to oxidation at 1500°C. Corrosion Science, 2013, 74, 154-158.	3.0	26
97	Structural Evolutions in Polymer-Derived Carbon-Rich Amorphous Silicon Carbide. Journal of Physical Chemistry A, 2015, 119, 552-558.	1.1	26
98	Polymer-derived SiAlOC ceramic pressure sensor with potential for high-temperature application. Sensors and Actuators A: Physical, 2017, 263, 174-178.	2.0	26
99	Oxygen diffusion through Al-doped amorphous SiO2. Journal of Phase Equilibria and Diffusion, 2006, 27, 671-675.	0.5	25
100	Phonon characteristics and photoluminescence of bamboo structured silicon-doped boron nitride multiwall nanotubes. Applied Physics Letters, 2007, 90, 013115.	1.5	25
101	Abnormal behavior of silica doped with small amounts of aluminum. Scientific Reports, 2016, 6, 35556.	1.6	25
102	Bundled Silicon Nitride Nanorings. Crystal Growth and Design, 2008, 8, 3921-3923.	1.4	24
103	Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites. Journal of Alloys and Compounds, 2020, 845, 155644.	2.8	24
104	Making Bulk Ceramics from Polymeric Precursors. Journal of the American Ceramic Society, 2010, 93, 3017-3019.	1.9	23
105	Facile preparation of ultralight polymerâ€derived Si <scp>OCN</scp> ceramic aerogels with hierarchical pore structure. Journal of the American Ceramic Society, 2019, 102, 2316-2324.	1.9	23
106	Grain refining in spark plasma sintering Al2O3 ceramics. Journal of Alloys and Compounds, 2015, 622, 596-600.	2.8	22
107	Electric conductivity and microstructure evolution of polymer-derived SiAlCO ceramics. Ceramics International, 2016, 42, 4033-4038.	2.3	22
108	Synthesis of Ceramic Nanocomposite Powders with in situ Formation of Nanowires/Nanobelts. Journal of the American Ceramic Society, 2008, 91, 1312-1315	1.9	21

#	Article	IF	CITATIONS
109	High performance heterogeneous magnesium-based nanocomposite. Materials Letters, 2015, 143, 287-289.	1.3	21
110	Enhanced electric conductivity of polymerâ€derived Si <scp>CN</scp> ceramics by microwave postâ€treatment. Journal of the American Ceramic Society, 2017, 100, 842-847.	1.9	21
111	Ultrafast formation of Al ₂ O ₃ –Y ₃ Al ₅ O ₁₂ eutectic ceramic by flash sintering. Journal of the American Ceramic Society, 2020, 103, 4051-4056.	1.9	21
112	Ultra-low temperature reactive flash sintering synthesis of high-enthalpy and high-entropy Ca0.2Co0.2Ni0.2Cu0.2Zn0.2O oxide ceramics. Materials Letters, 2021, 304, 130679.	1.3	21
113	Making Nanostructured Ceramics from Micrometer‣ized Powders via Grain Refinement During SPS Sintering. Journal of the American Ceramic Society, 2008, 91, 2475-2480.	1.9	20
114	Coalescence of Nanobranches:Â A New Growth Mechanism for Single Crystal Nanobelts. Journal of Physical Chemistry B, 2006, 110, 3969-3972.	1.2	19
115	Synthesis of Nd/Si Codoped YAG Powders via a Solvothermal Method. Journal of the American Ceramic Society, 2006, 89, 3570-3572.	1.9	19
116	Simultaneous growth of Si3N4 nanobelts and nanodendrites by catalyst-assisted crystallization of amorphous SiCN. Journal of Crystal Growth, 2005, 276, 1-6.	0.7	18
117	Effect of reinforcement particle size on quasistatic and dynamic mechanical properties of Al-Al2O3 composites. Journal of Alloys and Compounds, 2019, 797, 1367-1371.	2.8	18
118	Interplay of microstructure and mechanical properties of WC-6Co cemented carbides by hot oscillating pressing method. Ceramics International, 2021, 47, 20731-20735.	2.3	18
119	Synthesis of Spherical Nonâ€Oxide Silicon Carbonitride Ceramic Particles. Journal of the American Ceramic Society, 2011, 94, 2779-2782.	1.9	17
120	Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics. Ceramics International, 2016, 42, 19066-19070.	2.3	17
121	Temperature dependent AC electric conduction of polymer-derived SiAlCN ceramics. Ceramics International, 2018, 44, 8461-8466.	2.3	17
122	An anion-deficient high-entropy fluorite oxide with very low density. Ceramics International, 2021, 47, 21207-21211.	2.3	17
123	Creep behavior of zirconia ceramics under a strong DC field. Scripta Materialia, 2022, 214, 114654.	2.6	17
124	Polygonal Single-Crystal Aluminum Borate Microtubes. Journal of the American Ceramic Society, 2005, 88, 485-487.	1.9	16
125	Effect of acrylic acid additive on electric conductivity of polymer-derived amorphous silicon carbonitride. Ceramics International, 2015, 41, 7971-7976.	2.3	16
126	Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages. Ceramics International, 2021, 47, 23682-23685.	2.3	16

#	Article	IF	CITATIONS
127	Design and investigate the electrical properties of Pb(Mg0.2Zn0.2Nb0.2Ta0.2W0.2)O3–PbTiO3 high-entropy ferroelectric ceramics. Ceramics International, 2022, 48, 12848-12855.	2.3	16
128	Synthesis of SiFeC Magnetoceramics from Reverse Polycarbosilaneâ€Based Microemulsions. Journal of the American Ceramic Society, 2010, 93, 3324-3329.	1.9	15
129	Porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-ſ̃ high-entropy ceramics with both high strength and low thermal conductivity. Journal of the European Ceramic Society, 2021, 41, 309-314.	2.8	15
130	Indentation Fatigue in Random and Textured Alumina Composites. Journal of the American Ceramic Society, 1999, 82, 178-182.	1.9	14
131	Asymmetric Silicon Nitride Nanodendrites. Crystal Growth and Design, 2008, 8, 2606-2608.	1.4	14
132	Morphology Instability of Silicon Nitride Nanowires. Journal of Physical Chemistry C, 2009, 113, 5902-5905.	1.5	14
133	Evolution in the Electronic Structure of Polymerâ€derived Amorphous Silicon Carbide. Journal of the American Ceramic Society, 2015, 98, 2153-2158.	1.9	14
134	Electrical conductivity of silicon carbonitrideâ€reduced graphene oxide composites. Journal of the American Ceramic Society, 2017, 100, 5113-5119.	1.9	14
135	Impedance spectroscopy study on polymerâ€derived amorphous SiAl <scp>CO</scp> . Journal of the American Ceramic Society, 2017, 100, 1481-1485.	1.9	13
136	The mechanical behavior of hierarchical Mg matrix nanocomposite with high volume fraction reinforcement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 699, 114-117.	2.6	13
137	Anomalous piezo-dielectricity of a polymer-derived amorphous silicoaluminum oxycarbide (SiAlCO). Ceramics International, 2018, 44, 1467-1470.	2.3	13
138	Aluminum nanocomposites having wear resistance better than stainless steel. Journal of Materials Research, 2011, 26, 2479-2483.	1.2	12
139	On electronic structure of polymer-derived amorphous silicon carbide ceramics. Applied Physics Letters, 2014, 104, .	1.5	12
140	Effects of GeO ₂ Addition on Sintering and Properties of (K _{0.5} Na _{0.5})NbO ₃ Ceramics. Journal of the American Ceramic Society, 2016, 99, 1681-1686.	1.9	12
141	Effects of soft phase on the mechanical behaviors of hierarchical Mg nanocomposites. Journal of Alloys and Compounds, 2018, 768, 618-624.	2.8	12
142	High-temperature characterization of SiCN ceramics for wireless passive sensing applications up to 500°C. , 2011, , .		11
143	Study on coexistence of brittle and ductile fractures in nano reinforcement composites under different loading conditions. International Journal of Fracture, 2017, 204, 205-224.	1.1	11
144	Optical Absorption in Polymerâ€Derived Amorphous Silicon Oxycarbonitrides. Journal of the American Ceramic Society, 2009, 92, 3111-3113.	1.9	10

#	Article	IF	CITATIONS
145	Characterization of high-temperature ceramic materials at microwave frequencies for MEMS applications. , 2009, , .		10
146	Non-contact electric field-enhanced abnormal grain growth in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2017, 43, 12343-12347.	2.3	10
147	Magnesium nanocomposites reinforced with a high volume fraction of SiC particulates. International Journal of Materials Research, 2017, 108, 848-856.	0.1	10
148	Effects of Re addition on phase stability and mechanical properties of hexagonal OsB ₂ . Journal of the American Ceramic Society, 2018, 101, 151-158.	1.9	10
149	Heterogeneous magnesium matrix nanocomposites with high bending strength and fracture toughness. Journal of Alloys and Compounds, 2021, 855, 157359.	2.8	10
150	In situ formation of Si3N4–SiC nanocomposites through polymer-derived SiAlCN ceramics and spark plasma sintering. Ceramics International, 2021, 47, 22049-22054.	2.3	10
151	Hot oscillating pressed FGH4096 nickel-based alloy with enhanced ductility and strength. Journal of Alloys and Compounds, 2022, 894, 162366.	2.8	10
152	Alumina platelet reinforced reaction bonded aluminum oxide composites: Textured and random. Journal of Materials Research, 1997, 12, 3300-3306.	1.2	9
153	Synthesis of nanostructured silicon carbide at ultralow temperature using self-assembled polymer micelles as a precursor. Journal of Materials Chemistry, 2011, 21, 17619.	6.7	9
154	Structure and Optical Property of Polymerâ€Derived Amorphous Silicon Oxycarbides Obtained at Different Temperatures. Journal of the American Ceramic Society, 2011, 94, 3359-3363.	1.9	9
155	Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam. Journal of Micromechanics and Microengineering, 2013, 23, 095035.	1.5	9
156	Coupling Effect of Temperature and Stress on the Electronic Behavior of Amorphous SiAlCO. Journal of the American Ceramic Society, 2016, 99, 1881-1884.	1.9	9
157	Predicting ductility of Mg/SiCp nanocomposite under multiaxial loading conditions based on unit cell modeling. International Journal of Mechanical Sciences, 2020, 184, 105831.	3.6	9
158	Flash sintering of ultraâ€high pure alumina ceramics with fine microstructure. Journal of the American Ceramic Society, 2022, 105, 5569-5575.	1.9	9
159	Development of a Wireless Temperature Sensor Using Polymer-Derived Ceramics. Journal of Sensors, 2016, 2016, 1-5.	0.6	8
160	Synthesis of osmium borides by mechanochemical method. Journal of the American Ceramic Society, 2017, 100, 2419-2428.	1.9	8
161	Preparation and mechanical properties of SiCw-Al2O3-YAG ceramic composite by hot oscillatory pressing. Ceramics International, 2021, 47, 21231-21235.	2.3	8
162	Wireless passive sensor development for harsh environment applications. , 2012, , .		7

#	Article	IF	CITATIONS
163	On the electric conduction of ZrO2 in the steady stage of flash sintering. Ceramics International, 2020, 46, 5715-5718.	2.3	7
164	Entropy-stabilized oxides with medium configurational entropy. Ceramics International, 2021, 47, 9979-9983.	2.3	7
165	Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing. Acta Metallurgica Sinica (English Letters), 2022, 35, 915-921.	1.5	7
166	Hot oscillatory pressing of B ₄ C ceramics for improving densification and mechanical properties. Journal of the American Ceramic Society, 2022, 105, 5039-5044.	1.9	7
167	Fabrication of Si3N4/SiC nanocomposites toughened by in-situ formed low-dimensional nanostructures. Solid State Sciences, 2010, 12, 1692-1695.	1.5	6
168	Stress analysis of the field-assisted sintering: Electrothermal mechanical interaction. International Journal of Applied Electromagnetics and Mechanics, 2010, 32, 125-132.	0.3	6
169	Ceramic nanocomposites reinforced with a high volume fraction of carbon nanofibers. Materials Letters, 2012, 68, 108-111.	1.3	6
170	Flexible Hydrophobic and Lipophilic Aluminumâ€Đoped Silicon Carbide Fibrous Mats Synthesized by Electrospinning Polyaluminocarbosilane. International Journal of Applied Ceramic Technology, 2014, 11, 699-705.	1.1	6
171	Synthesis and photoluminescence properties of Eu ³⁺ -doped ZrO ₂ hollow spheres. Journal of Materials Research, 2015, 30, 3740-3745.	1.2	6
172	Formation of Novel Microstructured Si <scp>CNO</scp> Films from Block Copolymer Micellarâ€Templating Approaches. Journal of the American Ceramic Society, 2015, 98, 2894-2901.	1.9	6
173	Synthesis of Non-oxide Porous Ceramics Using Random Copolymers as Precursors. Journal of Materials Science and Technology, 2015, 31, 120-124.	5.6	6
174	The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites. Acta Mechanica, 2017, 228, 2541-2554.	1.1	6
175	Deformation and failure behavior of heterogeneous Mg/SiC nanocomposite under compression. Journal of Magnesium and Alloys, 2022, 10, 3433-3446.	5.5	6
176	Sintering process in hot oscillatory pressure of 90W–7Ni–3Fe refractory alloy at different time. Vacuum, 2022, 195, 110697.	1.6	6
177	Perfect Singleâ€Crystal Alumina Microspheres. Journal of the American Ceramic Society, 2008, 91, 2732-2735.	1.9	5
178	Silicon Carbonitride Hollow Nanospheres from a Blockâ€Copolymer Precursor. Journal of the American Ceramic Society, 2014, 97, 2387-2389.	1.9	5
179	Template-free synthesis of hierarchically porous SiBCN monolith from organic gel precursors. Ceramics International, 2016, 42, 12323-12329.	2.3	5
180	Hollow Alumina Microsphere Chain Networks. Journal of the American Ceramic Society, 2009, 92, 280-282.	1.9	4

0

#	Article	IF	CITATIONS
181	Microstructure and Tribological Behavior of Al2O3 Particle Reinforced Al Matrix Composites Fabricated by Spark Plasma Sintering. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1013-1017.	0.4	4
182	Formation of eutectic structure in dense Al2O3-YAG composite by electric field treatment. Ceramics International, 2021, 47, 23647-23652.	2.3	4
183	Hot Oscillatory Pressing of Carbon Nanotube-Reinforced Copper Matrix Nanocomposite. Nanomaterials, 2021, 11, 2411.	1.9	4
184	Fabrication of SiCN MEMS structures using microforged molds. , 0, , .		3
185	Wireless resonant frequency detection of SiCN ceramic resonator for sensor applications. , 2011, , .		3
186	Effect of Thermal Initiator Concentrations on the Structure and Optical Band Gaps of Polyvinylsilazaneâ€Đerived SiOCN Ceramics. International Journal of Applied Ceramic Technology, 2015, 12, 985-990.	1.1	3
187	Ceramic nanocomposites reinforced with a high volume fraction of carbon nanotubes. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 47-50.	0.4	3
188	Damage behavior of heterogeneous magnesium matrix nanocomposites. MRS Communications, 2020, 10, 359-364.	0.8	3
189	Fabrication of multi-layered SiCN ceramic MEMS using photo-polymerization of precursor. , 0, , .		2
190	Contactâ€Damage Behavior of Textured and Random Alumina Ceramics under Hertzian Indentation. Journal of the American Ceramic Society, 2000, 83, 410-412.	1.9	2
191	Novel Microstructured Si <scp>CNO</scp> Films Based on Polyvinylsilazaneâ€Swelled F127 Micelles. Journal of the American Ceramic Society, 2016, 99, 723-726.	1.9	2
192	Photoluminescence properties of Tb3+-doped stalk-like Al2O3. International Journal of Materials Research, 2016, 107, 280-282.	0.1	2
193	Eliminating the negative effect of monoclinic Nb ₂ O ₅ on electrical properties of (K _{0.5} Na _{0.5})NbO ₃ ceramics by twoâ€step sintering. International Journal of Applied Ceramic Technology, 2017, 14, 987-991.	1.1	2
194	Formation of hierarchical mesoporous silicon carbide from self-assembled block copolymer micelles. Materials Letters, 2017, 190, 195-197.	1.3	2
195	Micro-machinable polymer-derived ceramic sensors for high-temperature applications. Proceedings of SPIE, 2010, , .	0.8	1
196	Electrothermal stress in conducting particulate composites. Journal of Materials Science, 2012, 47, 6226-6236.	1.7	1
197	Polymer-Derived Si-Al-C-N-O Ceramics for High Temperature Applications. , 2003, , 607.		0

198 Polymer-derived ceramics-based fuel atomizers. , 2004, , .

#	Article	IF	CITATIONS
199	The Potential of Electronic High Temperature Devices Based Upon Polymer Derived Ceramics. , 2005, , 231.		Ο
200	A Facile Route to Construct <scp>S</scp> i <scp>CO</scp> Nanospheres with Tunable Sizes. International Journal of Applied Ceramic Technology, 2014, 11, 670-675.	1.1	0
201	Effect of temperature on internal potential barriers in polymer-derived amorphous ceramics. Ceramics International, 2019, 45, 13575-13578.	2.3	Ο
202	Ca2+ doping effects in (K, Na, Li)(Nb0.8Ta0.2)O3 lead-free piezoelectric ceramics. Frontiers of Materials Science, 2019, 13, 431-438.	1.1	0
203	Synthesis and Oxidation Behaviour of Polymer-Derived SI-AL-C-N and SICN Amorphous Ceramics. Ceramic Engineering and Science Proceedings, 0, , 303-308.	0.1	0