
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12014750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pathophysiology and Treatment of Glaucoma. JAMA - Journal of the American Medical Association, 2014, 311, 1901.	7.4	2,572
2	Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. American Journal of Ophthalmology, 2005, 139, 44-55.	3.3	589
3	Prevalence of Ocular Surface Disease in Glaucoma Patients. Journal of Glaucoma, 2008, 17, 350-355.	1.6	514
4	Comparison of the GDx VCC Scanning Laser Polarimeter, HRT II ConfocalScanning Laser Ophthalmoscope, and Stratus OCT Optical Coherence Tomographfor the Detection of Glaucoma. JAMA Ophthalmology, 2004, 122, 827.	2.4	423
5	Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. , 2016, 57, OCT451.		392
6	Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology, 2016, 123, 2498-2508.	5.2	347
7	Primary open-angle glaucoma. Nature Reviews Disease Primers, 2016, 2, 16067.	30.5	319
8	Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer. Journal of Glaucoma, 2006, 15, 364-370.	1.6	279
9	Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma. PLoS Genetics, 2012, 8, e1002654.	3.5	276
10	The African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2009, 127, 1136.	2.4	269
11	Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. American Journal of Ophthalmology, 2003, 136, 805-813.	3.3	232
12	Corneal Hysteresis as a Risk Factor for Glaucoma Progression: A Prospective Longitudinal Study. Ophthalmology, 2013, 120, 1533-1540.	5.2	232
13	Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology, 2017, 124, 709-719.	5.2	202
14	The Structure and Function Relationship in Glaucoma: Implications for Detection of Progression and Measurement of Rates of Change. , 2012, 53, 6939.		200
15	Reproducibility of RTVue Retinal Nerve Fiber Layer Thickness and Optic Disc Measurements and Agreement with Stratus Optical Coherence Tomography Measurements. American Journal of Ophthalmology, 2009, 147, 1067-1074.e1.	3.3	198
16	Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology, 2016, 123, 2509-2518.	5.2	194
17	Detection of Glaucoma Progression with Stratus OCT Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements. , 2009, 50, 5741.		179
18	Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss. American Journal of Ophthalmology, 2004, 137, 863-871.	3.3	178

#	Article	IF	CITATIONS
19	Structure–Function Relationships Using Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and Scanning Laser Polarimetry. , 2006, 47, 2889.		174
20	Comparison of the Diagnostic Accuracies of the Spectralis, Cirrus, and RTVue Optical Coherence Tomography Devices in Glaucoma. Ophthalmology, 2011, 118, 1334-1339.	5.2	174
21	Retinal nerve fiber layer thickness measurements with scanning laser polarimetry predict glaucomatous visual field loss. American Journal of Ophthalmology, 2004, 138, 592-601.	3.3	169
22	Comparison of Different Spectral Domain Optical Coherence Tomography Scanning Areas for Glaucoma Diagnosis. Ophthalmology, 2010, 117, 1692-1699.e1.	5.2	169
23	Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in AdvancedÂGlaucoma. American Journal of Ophthalmology, 2017, 175, 37-44.	3.3	167
24	Validation of a Predictive Model to Estimate the Risk of Conversion From Ocular Hypertension to Glaucoma. JAMA Ophthalmology, 2005, 123, 1351.	2.4	166
25	From Machine to Machine. Ophthalmology, 2019, 126, 513-521.	5.2	158
26	Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma Suspect Eyes. Ophthalmology, 2014, 121, 1350-1358.	5.2	157
27	Prediction of Functional Loss in Glaucoma From Progressive Optic Disc Damage. JAMA Ophthalmology, 2009, 127, 1250.	2.4	156
28	Influence of Disease Severity and Optic Disc Size on the Diagnostic Performance of Imaging Instruments in Glaucoma. , 2006, 47, 1008.		155
29	Continuous 24-Hour Monitoring of Intraocular Pressure Patterns With a Contact Lens Sensor. JAMA Ophthalmology, 2012, 130, 1534.	2.4	154
30	Baseline Optical Coherence Tomography Predicts the Development of Glaucomatous Change in Glaucoma Suspects. American Journal of Ophthalmology, 2006, 142, 576-582.e1.	3.3	153
31	Long-term Intraocular Pressure Fluctuations and Risk of Conversion from Ocular Hypertension to Glaucoma. Ophthalmology, 2008, 115, 934-940.	5.2	149
32	Longitudinal Changes in Quality of Life and Rates of Progressive Visual Field Loss in Glaucoma Patients. Ophthalmology, 2015, 122, 293-301.	5.2	144
33	24-2 Visual Fields Miss Central Defects Shown on 10-2 Tests in Glaucoma Suspects, Ocular Hypertensives, and Early Glaucoma. Ophthalmology, 2017, 124, 1449-1456.	5.2	142
34	Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. Ophthalmology, 2017, 124, S57-S65.	5.2	141
35	Estimating Lead Time Gained by OpticalÂCoherence Tomography in DetectingÂGlaucoma before Development ofÂVisual Field Defects. Ophthalmology, 2015, 122, 2002-2009.	5.2	131
36	Deep Learning and Glaucoma Specialists. Ophthalmology, 2019, 126, 1627-1639.	5.2	130

#	Article	IF	CITATIONS
37	African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2010, 128, 541.	2.4	125
38	A Combined Index of Structure and Function for Staging Glaucomatous Damage. JAMA Ophthalmology, 2012, 130, 1107-16.	2.4	125
39	Intraocular Pressure Fluctuations in Medical versus Surgically Treated Claucomatous Patients. Journal of Ocular Pharmacology and Therapeutics, 2002, 18, 489-498.	1.4	121
40	The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma. Ophthalmology, 2016, 123, 552-557.	5.2	120
41	Use of Progressive Glaucomatous Optic Disk Change as the Reference Standard for Evaluation of Diagnostic Tests in Glaucoma. American Journal of Ophthalmology, 2005, 139, 1010-1018.	3.3	114
42	Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients. American Journal of Ophthalmology, 2003, 135, 131-137.	3.3	113
43	Combining Structural and Functional Testing for Detection of Glaucoma. Ophthalmology, 2006, 113, 1593-1602.	5.2	112
44	Comparison of Different Spectral Domain OCT Scanning Protocols for Diagnosing Preperimetric Glaucoma. , 2013, 54, 3417.		112
45	Agreement Among Spectral-Domain Optical Coherence Tomography Instruments for Assessing Retinal Nerve Fiber Layer Thickness. American Journal of Ophthalmology, 2011, 151, 85-92.e1.	3.3	111
46	Retinal Ganglion Cell Count Estimates Associated with Early Development of Visual Field Defects in Glaucoma. Ophthalmology, 2013, 120, 736-744.	5.2	106
47	Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology, 2016, 123, 2309-2317.	5.2	106
48	Diagnosing Preperimetric Glaucoma with Spectral Domain Optical Coherence Tomography. Ophthalmology, 2012, 119, 2261-2269.	5.2	105
49	Identifying Glaucomatous Vision Loss with Visual-Function–Specific Perimetry in the Diagnostic Innovations in Glaucoma Study. , 2006, 47, 3381.		104
50	Assessment of Choroidal Thickness and Volume during the Water Drinking Test by Swept-Source Optical Coherence Tomography. Ophthalmology, 2013, 120, 2508-2516.	5.2	102
51	Combining Structural and Functional Measurements to Improve Detection of Glaucoma Progression using Bayesian Hierarchical Models. , 2011, 52, 5794.		101
52	Structure-function Relationships Using the Cirrus Spectral Domain Optical Coherence Tomograph and Standard Automated Perimetry. Journal of Glaucoma, 2012, 21, 49-54.	1.6	99
53	Corneal thickness measurements and frequency doubling technology perimetry abnormalities in ocular hypertensive eyes. Ophthalmology, 2003, 110, 1903-1908.	5.2	97
54	Comparing the Rates of Retinal Nerve Fiber Layer and Ganglion Cell–Inner Plexiform Layer Loss in Healthy Eyes and in Glaucoma Eyes. American Journal of Ophthalmology, 2017, 178, 38-50.	3.3	97

#	Article	IF	CITATIONS
55	Axonal loss after traumatic optic neuropathy documented by optical coherence tomography. American Journal of Ophthalmology, 2003, 135, 406-408.	3.3	95
56	Comparison of Retinal Nerve Fiber Layer and Optic Disc Imaging for Diagnosing Glaucoma in Patients Suspected of Having the Disease. Ophthalmology, 2008, 115, 1340-1346.	5.2	94
57	Estimating the Rate of Retinal Ganglion Cell Loss in Glaucoma. American Journal of Ophthalmology, 2012, 154, 814-824.e1.	3.3	94
58	Evaluation of Retinal and Choroidal Thickness by Swept-Source Optical Coherence Tomography: Repeatability and Assessment of Artifacts. American Journal of Ophthalmology, 2014, 157, 1022-1032.e3.	3.3	94
59	African Descent and Glaucoma Evaluation Study (ADAGES). JAMA Ophthalmology, 2010, 128, 551.	2.4	92
60	Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans. JAMA Ophthalmology, 2020, 138, 333.	2.5	92
61	Detection of Glaucoma Using Scanning Laser Polarimetry with Enhanced Corneal Compensation. , 2007, 48, 3146.		90
62	The Relationship between Intraocular Pressure and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology, 2009, 116, 1125-1133.e3.	5.2	90
63	Defects of the Lamina Cribrosa in Eyes with Localized Retinal Nerve Fiber Layer Loss. Ophthalmology, 2014, 121, 110-118.	5.2	90
64	A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Translational Vision Science and Technology, 2020, 9, 42.	2.2	89
65	Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression. , 2018, 59, 2748.		86
66	Comparison of Latanoprostene Bunod 0.024% and Timolol Maleate 0.5% in Open-Angle Glaucoma or Ocular Hypertension: The LUNAR Study. American Journal of Ophthalmology, 2016, 168, 250-259.	3.3	85
67	Detection of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Using Scanning Laser Polarimetry with Variable Corneal Compensation. , 2009, 50, 1675.		84
68	Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis. , 2010, 51, 4104.		84
69	Glaucoma Progression Detection Using Structural Retinal Nerve Fiber Layer Measurements and Functional Visual Field Points. IEEE Transactions on Biomedical Engineering, 2014, 61, 1143-1154.	4.2	84
70	Comparability of Retinal Nerve Fiber Layer Thickness Measurements of Optical Coherence Tomography Instruments. , 2005, 46, 1280.		83
71	The Relationship between Intraocular Pressure Reduction and Rates of Progressive Visual Field Loss in Eyes with Optic Disc Hemorrhage. Ophthalmology, 2010, 117, 2061-2066.	5.2	83
72	Structure-Function Relationship in Glaucoma Using Spectral-Domain Optical Coherence Tomography. JAMA Ophthalmology, 2011, 129, 864.	2.4	79

#	Article	IF	CITATIONS
73	Association Between Progressive Retinal Nerve Fiber Layer Loss and Longitudinal Change in Quality of Life in Glaucoma. JAMA Ophthalmology, 2015, 133, 384.	2.5	79
74	Structural Change Can Be Detected in Advanced-Glaucoma Eyes. , 2016, 57, OCT511.		79
75	Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss. JAMA Ophthalmology, 2017, 135, 550.	2.5	78
76	Evaluation of Macular Thickness Measurements for Detection of Band Atrophy of the Optic Nerve Using Optical Coherence Tomography. Ophthalmology, 2007, 114, 175-181.	5.2	77
77	Frequency of Testing to Detect Visual Field Progression Derived Using a Longitudinal Cohort of Glaucoma Patients. Ophthalmology, 2017, 124, 786-792.	5.2	76
78	Relevance Vector Machine and Support Vector Machine Classifier Analysis of Scanning Laser Polarimetry Retinal Nerve Fiber Layer Measurements. , 2005, 46, 1322.		75
79	Effect of Signal Strength and Improper Alignment on the Variability of Stratus Optical Coherence Tomography Retinal Nerve Fiber Layer Thickness Measurements. American Journal of Ophthalmology, 2009, 148, 249-255.e1.	3.3	75
80	The Effect of Disc Size and Severity of Disease on the Diagnostic Accuracy of the Heidelberg Retina Tomograph Glaucoma Probability Score. , 2007, 48, 2653.		74
81	Rates of Progressive Retinal Nerve Fiber Layer Loss in Glaucoma Measured by Scanning Laser Polarimetry. American Journal of Ophthalmology, 2010, 149, 908-915.	3.3	73
82	Association Between Corneal Biomechanical Properties and Glaucoma Severity. American Journal of Ophthalmology, 2012, 153, 419-427.e1.	3.3	72
83	A Statistical Approach to the Evaluation of Covariate Effects on the Receiver Operating Characteristic Curves of Diagnostic Tests in Glaucoma. , 2006, 47, 2520.		71
84	A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. American Journal of Ophthalmology, 2019, 201, 9-18.	3.3	70
85	The Effects of Study Design and Spectrum Bias on the Evaluation of Diagnostic Accuracy of Confocal Scanning Laser Ophthalmoscopy in Glaucoma. , 2007, 48, 214.		69
86	Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. American Journal of Ophthalmology, 2020, 211, 123-131.	3.3	69
87	Diagnostic Ability of Macular Ganglion Cell Inner Plexiform Layer Measurements in Glaucoma Using Swept Source and Spectral Domain Optical Coherence Tomography. PLoS ONE, 2015, 10, e0125957.	2.5	68
88	A Comparison of Rates of Change in Neuroretinal Rim Area and Retinal Nerve Fiber Layer Thickness in Progressive Glaucoma. , 2010, 51, 3531.		67
89	Diagnostic Ability of Retinal Nerve Fiber Layer Imaging byÂSwept-Source Optical Coherence Tomography inÂGlaucoma. American Journal of Ophthalmology, 2015, 159, 193-201.	3.3	67
90	Bayesian Machine Learning Classifiers for Combining Structural and Functional Measurements to Classify Healthy and Glaucomatous Eyes. , 2008, 49, 945.		66

6

#	Article	IF	CITATIONS
91	Comparison of Scanning Laser Polarimetry Using Variable Corneal Compensationand Retinal Nerve Fiber Layer Photography for Detection of Glaucoma. JAMA Ophthalmology, 2004, 122, 698.	2.4	65
92	Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry - Journal of the American Optometric Association, 2005, 76, 661-668.	0.6	65
93	Effect of Improper Scan Alignment on Retinal Nerve Fiber Layer Thickness Measurements Using Stratus Optical Coherence Tomograph. Journal of Glaucoma, 2008, 17, 341-349.	1.6	65
94	Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography. PLoS ONE, 2014, 9, e109683.	2.5	65
95	Agreement for Detecting Glaucoma Progression with the GDx Guided Progression Analysis, Automated Perimetry, and Optic Disc Photography. Ophthalmology, 2010, 117, 462-470.	5.2	63
96	Combining Structural and Functional Measurements to Improve Estimates of Rates of Glaucomatous Progression. American Journal of Ophthalmology, 2012, 153, 1197-1205.e1.	3.3	63
97	Spectral domain-optical coherence tomography to detect localized retinal nerve fiber layer defects in glaucomatous eyes. Optics Express, 2009, 17, 4004.	3.4	62
98	Relationship between Ganglion Cell Layer Thickness and Estimated Retinal Ganglion Cell Counts in the Glaucomatous Macula. Ophthalmology, 2014, 121, 2371-2379.	5.2	62
99	A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor for Predicting Development of Claucoma. American Journal of Ophthalmology, 2018, 187, 148-152.	3.3	62
100	Phase 3, Randomized, 20-Month Study ofÂBimatoprost Implant in Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 1). Ophthalmology, 2020, 127, 1627-1641.	5.2	62
101	Confocal Scanning Laser Ophthalmoscopy Classifiers and Stereophotograph Evaluation for Prediction of Visual Field Abnormalities in Glaucoma-Suspect Eyes. , 2004, 45, 2255.		61
102	Effect of Disease Severity and Optic Disc Size on Diagnostic Accuracy of RTVue Spectral Domain Optical Coherence Tomograph in Glaucoma. , 2011, 52, 1290.		61
103	Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. American Journal of Ophthalmology, 2016, 166, 29-36.	3.3	61
104	Impact of Normal Aging and Progression Definitions on the Specificity of Detecting Retinal Nerve Fiber Layer Thinning. American Journal of Ophthalmology, 2017, 181, 106-113.	3.3	61
105	Fourier Analysis of Scanning Laser Polarimetry Measurements with Variable Corneal Compensation in Glaucoma. , 2003, 44, 2606.		60
106	Retinal Nerve Fiber Layer Thickness and Visual Sensitivity Using Scanning Laser Polarimetry with Variable and Enhanced Corneal Compensation. Ophthalmology, 2007, 114, 1259-1265.	5.2	60
107	The Relative Odds of Progressing by Structural and Functional Tests in Glaucoma. , 2016, 57, OCT421.		60
108	Relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertensive patients. Ophthalmology, 2005, 112, 251-256.	5.2	56

#	Article	IF	CITATIONS
109	Strategies for improving early detection of glaucoma: the combined structure–function index. Clinical Ophthalmology, 2014, 8, 611.	1.8	56
110	The NEICHBOR Consortium Primary Open-Angle Glaucoma Genome-wide Association Study. Journal of Glaucoma, 2013, 22, 517-525.	1.6	55
111	What rates of glaucoma progression are clinically significant?. Expert Review of Ophthalmology, 2016, 11, 227-234.	0.6	54
112	Learning From Data: Recognizing Glaucomatous Defect Patterns and Detecting Progression From Visual Field Measurements. IEEE Transactions on Biomedical Engineering, 2014, 61, 2112-2124.	4.2	53
113	Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Claucomatous Progression in Standard Automated Perimetry Visual Fields. Translational Vision Science and Technology, 2016, 5, 2.	2.2	51
114	Evaluation of Progressive Neuroretinal Rim Loss as a Surrogate End Point for Development of Visual Field Loss in Glaucoma. Ophthalmology, 2014, 121, 100-109.	5.2	49
115	Management of advanced glaucoma: Characterization and monitoring. Survey of Ophthalmology, 2016, 61, 597-615.	4.0	49
116	Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Ophthalmology, 2021, 128, 383-392.	5.2	49
117	Agreement among 3 Optical Imaging Methods for the Assessment of Optic Disc Topography. Ophthalmology, 2005, 112, 2149-2156.	5.2	48
118	Relationship Between Patterns of Visual Field Loss and Retinal Nerve Fiber Layer Thickness Measurements. American Journal of Ophthalmology, 2006, 141, 463-471.e1.	3.3	48
119	Diagnostic Accuracy of the Matrix 24-2 and Original N-30 Frequency-Doubling Technology Tests Compared with Standard Automated Perimetry. , 2008, 49, 954.		47
120	Comparison of Corneal Biomechanical Properties Between Healthy Blacks and Whites Using the Ocular Response Analyzer. American Journal of Ophthalmology, 2010, 150, 163-168.e1.	3.3	47
121	Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure. Ophthalmology, 2019, 126, 1640-1646.	5.2	47
122	Comparison of Dynamic Contour Tonometry and Goldmann Applanation Tonometry in African American Subjects. Ophthalmology, 2007, 114, 658-665.	5.2	46
123	Comparison of HRT-3 Glaucoma Probability Score and Subjective Stereophotograph Assessment for Prediction of Progression in Glaucoma. , 2008, 49, 1898.		46
124	Improved Prediction of Rates of Visual Field Loss in Glaucoma Using Empirical Bayes Estimates of Slopes of Change. Journal of Glaucoma, 2012, 21, 147-154.	1.6	46
125	The Bidirectional Relationship between Vision and Cognition. Ophthalmology, 2021, 128, 981-992.	5.2	46
126	Incorporating Risk Factors to Improve the Assessment of Rates of Glaucomatous Progression. , 2012, 53, 2199.		45

#	Article	IF	CITATIONS
127	Rates of Glaucomatous Structural and Functional Change From a Large Clinical Population: The Duke Glaucoma Registry Study. American Journal of Ophthalmology, 2021, 222, 238-247.	3.3	45
128	American Chinese Glaucoma Imaging Study: A Comparison of the Optic Disc and Retinal Nerve Fiber Layer in Detecting Glaucomatous Damage. , 2007, 48, 2644.		44
129	Fast Visual Field Progression Is Associated with Depressive Symptoms in Patients with Glaucoma. Ophthalmology, 2016, 123, 754-759.	5.2	44
130	Does the Location of Bruch's Membrane Opening Change Over Time? Longitudinal Analysis Using San Diego Automated Layer Segmentation Algorithm (SALSA). , 2016, 57, 675.		43
131	Recent developments in visual field testing for glaucoma. Current Opinion in Ophthalmology, 2018, 29, 141-146.	2.9	42
132	The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT-A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. Journal of Glaucoma, 2018, 27, 227-232.	1.6	42
133	Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder. Scientific Reports, 2019, 9, 18113.	3.3	42
134	Artificial Intelligence Mapping of Structure to Function in Glaucoma. Translational Vision Science and Technology, 2020, 9, 19.	2.2	42
135	Clobal rates of glaucoma surgery. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 2609-2615.	1.9	41
136	The African Descent and Glaucoma Evaluation Study (ADAGES): Predictors of Visual Field Damage in Glaucoma Suspects. American Journal of Ophthalmology, 2015, 159, 777-787.e1.	3.3	41
137	Detection of Glaucoma Progression in Individuals of African Descent Compared With Those of European Descent. JAMA Ophthalmology, 2018, 136, 329.	2.5	41
138	The Effect of Atypical Birefringence Patterns on Glaucoma Detection Using Scanning Laser Polarimetry with Variable Corneal Compensation. , 2007, 48, 223.		40
139	Performance of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma. American Journal of Ophthalmology, 2018, 196, 10-17.	3.3	40
140	Genetic Architecture of Primary Open-Angle Glaucoma in Individuals of African Descent. Ophthalmology, 2019, 126, 38-48.	5.2	40
141	Is 24-hour Intraocular Pressure Monitoring Necessary in Glaucoma?. Seminars in Ophthalmology, 2013, 28, 157-164.	1.6	39
142	Strategies to improve early diagnosis in glaucoma. Progress in Brain Research, 2015, 221, 103-133.	1.4	39
143	Association between Intraocular Pressure and Rates of Retinal Nerve Fiber Layer Loss Measured by Optical Coherence Tomography. Ophthalmology, 2016, 123, 2058-2065.	5.2	38
144	Estimated Retinal Ganglion Cell Counts in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. American Journal of Ophthalmology, 2013, 156, 578-587.e1.	3.3	37

#	Article	IF	CITATIONS
145	Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression. Translational Vision Science and Technology, 2018, 7, 20.	2.2	37
146	Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers. PLoS ONE, 2014, 9, e85941.	2.5	36
147	Driving Simulation as a Performance-based Test of Visual Impairment in Glaucoma. Journal of Glaucoma, 2012, 21, 221-227.	1.6	35
148	Lamina Cribrosa in Glaucoma: Diagnosis and Monitoring. Current Ophthalmology Reports, 2015, 3, 74-84.	1.2	35
149	Rates of Retinal Nerve Fiber Layer Loss inÂContralateral Eyes of Glaucoma Patients with Unilateral Progression by Conventional Methods. Ophthalmology, 2015, 122, 2243-2251.	5.2	35
150	The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up. Indian Journal of Ophthalmology, 2011, 59, 53.	1.1	35
151	Integrating Event- and Trend-Based Analyses to Improve Detection of Glaucomatous Visual Field Progression. Ophthalmology, 2012, 119, 458-467.	5.2	34
152	Detecting Glaucoma Using Automated Pupillography. Ophthalmology, 2014, 121, 1185-1193.	5.2	34
153	African Descent and Glaucoma Evaluation Study (ADAGES). Ophthalmology, 2016, 123, 1476-1483.	5.2	33
154	Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach. Scientific Reports, 2020, 10, 402.	3.3	33
155	The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression. Open Ophthalmology Journal, 2015, 9, 78-88.	0.2	33
156	Retinal nerve fibre layer thickness measurements in patients using chloroquine. Clinical and Experimental Ophthalmology, 2006, 34, 130-136.	2.6	32
157	Predicting Glaucomatous Progression in Glaucoma Suspect Eyes Using Relevance Vector Machine Classifiers for Combined Structural and Functional Measurements. , 2012, 53, 2382.		32
158	Estimated Rates of Retinal Ganglion Cell Loss in Glaucomatous Eyes with and without Optic Disc Hemorrhages. PLoS ONE, 2014, 9, e105611.	2.5	32
159	Effect of glaucoma medications on 24â€hour intraocular pressureâ€related patterns using a contact lens sensor. Clinical and Experimental Ophthalmology, 2015, 43, 787-795.	2.6	32
160	The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma. , 2020, 61, 8.		32
161	Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination. Clinical and Experimental Ophthalmology, 2011, 39, 308-317.	2.6	31
162	Medical backgrounders: Glaucoma. Drugs of Today, 2002, 38, 563.	2.4	30

10

#	Article	IF	CITATIONS
163	Clinicians Agreement in Establishing Glaucomatous Progression Using the Heidelberg Retina Tomograph. Ophthalmology, 2009, 116, 14-24.	5.2	29
164	Diagnostic Accuracy of the Spectralis and Cirrus Reference Databases in Differentiating between Healthy and Early Glaucoma Eyes. Ophthalmology, 2016, 123, 408-414.	5.2	29
165	Biomarkers and Surrogate Endpoints: Lessons Learned From Glaucoma. , 2017, 58, BIO20.		29
166	Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis. Open Ophthalmology Journal, 2015, 9, 68-77.	0.2	29
167	Long-term Variability of GDx VCC Retinal Nerve Fiber Layer Thickness Measurements. Journal of Glaucoma, 2007, 16, 277-281.	1.6	28
168	Impact of Atypical Retardation Patterns on Detection of Glaucoma Progression using the GDx with Variable Corneal Compensation. American Journal of Ophthalmology, 2009, 148, 155-163.e1.	3.3	28
169	Impact of Different Visual Field Testing Paradigms on Sample Size Requirements for Glaucoma Clinical Trials. Scientific Reports, 2018, 8, 4889.	3.3	28
170	Impact of Intraocular Pressure Control on Rates of Retinal Nerve Fiber Layer Loss in a Large Clinical Population. Ophthalmology, 2021, 128, 48-57.	5.2	28
171	Association of Central Corneal Thickness and 24-hour Intraocular Pressure Fluctuation. Journal of Glaucoma, 2008, 17, 85-88.	1.6	27
172	Pattern Electroretinogram and Psychophysical Tests of Visual Function for Discriminating Between Healthy and Glaucoma Eyes. American Journal of Ophthalmology, 2010, 149, 488-495.	3.3	27
173	Predicting Progression of Glaucoma from Rates of Frequency Doubling Technology Perimetry Change. Ophthalmology, 2014, 121, 498-507.	5.2	26
174	Association of Fast Visual Field Loss With Risk of Falling in Patients With Glaucoma. JAMA Ophthalmology, 2016, 134, 880.	2.5	26
175	Intraocular Pressure Fluctuations in Response to the Water-Drinking Provocative Test in Patients Using Latanoprost Versus Unoprostone. Journal of Ocular Pharmacology and Therapeutics, 2004, 20, 401-410.	1.4	25
176	Evaluation of Postural Control in PatientsÂwith Glaucoma Using a VirtualÂReality Environment. Ophthalmology, 2015, 122, 1131-1138.	5.2	25
177	Improving the Feasibility of Glaucoma Clinical Trials Using Trend-Based Visual Field Progression End Points. Ophthalmology Glaucoma, 2019, 2, 72-77.	1.9	25
178	Baseline 24-2 Central Visual Field Damage Is Predictive of Global Progressive Field Loss. American Journal of Ophthalmology, 2018, 187, 92-98.	3.3	24
179	Predicting Risk of Motor Vehicle Collisions in Patients with Glaucoma: A Longitudinal Study. PLoS ONE, 2015, 10, e0138288.	2.5	23
180	Comparing 10-2 and 24-2 Visual Fields forÂDetecting Progressive Central Visual LossÂinÂGlaucoma Eyes with Early CentralÂAbnormalities. Ophthalmology Glaucoma, 2019, 2, 95-102.	1.9	23

#	Article	IF	CITATIONS
181	The Relationship between Visual Field Index and Estimated Number of Retinal Ganglion Cells in Glaucoma. PLoS ONE, 2013, 8, e76590.	2.5	23
182	The Impact of the Perimetric Measurement Scale, Sample Composition, and Statistical Method on the Structure-function Relationship in Glaucoma. Journal of Glaucoma, 2007, 16, 676-684.	1.6	22
183	Quantitative Trait Locus Analysis of SIX1-SIX6 With Retinal Nerve Fiber Layer Thickness in Individuals of European Descent. American Journal of Ophthalmology, 2015, 160, 123-130.e1.	3.3	22
184	Blood Pressure and Glaucomatous Progression in a Large Clinical Population. Ophthalmology, 2022, 129, 161-170.	5.2	21
185	How should diagnostic tests be evaluated in glaucoma?. British Journal of Ophthalmology, 2007, 91, 273-274.	3.9	20
186	Glaucomatous Retinal Nerve Fiber Layer Thickness Loss Is Associated With Slower Reaction Times Under a Divided Attention Task. American Journal of Ophthalmology, 2014, 158, 1008-1017.e2.	3.3	20
187	Relationship Between Motor Vehicle Collisions and Results of Perimetry, Useful Field of View, and Driving Simulation in Drivers With Glaucoma. Translational Vision Science and Technology, 2015, 4, 5.	2.2	20
188	A Longitudinal Analysis of Peripapillary Choroidal Thinning in Healthy and Glaucoma Subjects. American Journal of Ophthalmology, 2018, 186, 89-95.	3.3	20
189	Development of a Visual Field Simulation Model of Longitudinal Point-Wise Sensitivity Changes From a Clinical Glaucoma Cohort. Translational Vision Science and Technology, 2018, 7, 22.	2.2	20
190	Predicting Glaucoma Development With Longitudinal Deep Learning Predictions From Fundus Photographs. American Journal of Ophthalmology, 2021, 225, 86-94.	3.3	20
191	Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma. American Journal of Ophthalmology, 2021, 229, 100-107.	3.3	20
192	Automated Beta Zone Parapapillary Area Measurement to Differentiate Between Healthy and Glaucoma Eyes. American Journal of Ophthalmology, 2018, 191, 140-148.	3.3	19
193	Impact of anxiety and depression on progression to glaucoma among glaucoma suspects. British Journal of Ophthalmology, 2021, 105, 1244-1249.	3.9	19
194	A combined index of structure and function for staging glaucomatous damage. JAMA Ophthalmology, 2012, 130, E1-10.	2.4	19
195	Detecting glaucomatous change in visual fields: Analysis with an optimization framework. Journal of Biomedical Informatics, 2015, 58, 96-103.	4.3	18
196	Predicting Vision-Related Disability in Glaucoma. Ophthalmology, 2018, 125, 22-30.	5.2	18
197	Association between Rates of Visual Field Progression and Intraocular Pressure Measurements Obtained by Different Tonometers. Ophthalmology, 2019, 126, 49-54.	5.2	18
198	Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma. American Journal of Ophthalmology, 2020, 210, 19-25.	3.3	18

#	Article	IF	CITATIONS
199	Likelihood Ratios for Glaucoma Diagnosis Using Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2013, 156, 918-926.e2.	3.3	17
200	Frequency Doubling Technology Perimetry and Changes in Quality of Life of Glaucoma Patients: A Longitudinal Study. American Journal of Ophthalmology, 2015, 160, 114-122.e1.	3.3	17
201	Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes. Ophthalmology, 2016, 123, 760-770.	5.2	17
202	Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. PLoS ONE, 2016, 11, e0160549.	2.5	17
203	Recognizing patterns of visual field loss using unsupervised machine learning. Proceedings of SPIE, 2014, 2014, .	0.8	16
204	β -Zone Parapapillary Atrophy and Rates of Glaucomatous Visual Field Progression. JAMA Ophthalmology, 2017, 135, 617.	2.5	16
205	A Comparison of OCT Parameters in Identifying Glaucoma Damage in Eyes Suspected of Having Glaucoma. Ophthalmology Glaucoma, 2020, 3, 90-96.	1.9	16
206	An objective structural and functional reference standard in glaucoma. Scientific Reports, 2021, 11, 1752.	3.3	16
207	Is vision-related quality of life impaired in patients with preperimetric glaucoma?. British Journal of Ophthalmology, 2019, 103, 955-959.	3.9	15
208	Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints. Scientific Reports, 2019, 9, 18886.	3.3	15
209	Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm. Scientific Reports, 2019, 9, 9836.	3.3	14
210	Visual Crowding in Glaucoma. , 2019, 60, 538.		14
211	Performance of the Rule of 5 for Detecting Glaucoma Progression between Visits withÂOCT. Ophthalmology Glaucoma, 2019, 2, 319-326.	1.9	14
212	Inconsistency of the Published Definition of Ocular Hypertension. Journal of Glaucoma, 2006, 15, 529-533.	1.6	13
213	Combining structure and function to evaluate glaucomatous progression: implications for the design of clinical trials. Current Opinion in Pharmacology, 2013, 13, 115-122.	3.5	13
214	Use of Statistical Analyses in the Ophthalmic Literature. Ophthalmology, 2014, 121, 1317-1321.	5.2	13
215	Transnational review of visual standards for driving: How Australia compares with the rest of the world. Clinical and Experimental Ophthalmology, 2019, 47, 847-863.	2.6	13
216	Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES). , 2019, 60, 4496.		13

#	Article	IF	CITATIONS
217	The African Descent and Glaucoma Evaluation Study (ADAGES) III. Ophthalmology, 2019, 126, 156-170.	5.2	13
218	Predicting Age From Optical Coherence Tomography Scans With Deep Learning. Translational Vision Science and Technology, 2021, 10, 12.	2.2	13
219	Predictive models to estimate the risk of glaucoma development and progression. Progress in Brain Research, 2008, 173, 15-24.	1.4	12
220	Glaucoma and Driving Risk under Simulated Fog Conditions. Translational Vision Science and Technology, 2016, 5, 15.	2.2	12
221	Deep learning in glaucoma: progress, but still lots to do. The Lancet Digital Health, 2019, 1, e151-e152.	12.3	12
222	Rates of Glaucoma Progression Derived from Linear Mixed Models Using Varied Random Effect Distributions. Translational Vision Science and Technology, 2022, 11, 16.	2.2	12
223	Optic Nerve Imaging: Recent Advances. Essentials in Ophthalmology, 2004, , 63-91.	0.1	11
224	Scan Tracking Coordinates for Improved Centering of Stratus OCT Scan Pattern. Journal of Glaucoma, 2009, 18, 81-87.	1.6	11
225	Macular Pigment and Visual Function in Patients With Glaucoma: The San Diego Macular Pigment Study. , 2018, 59, 4471.		11
226	What Is the Amount of Visual Field Loss Associated With Disability in Glaucoma?. American Journal of Ophthalmology, 2019, 197, 45-52.	3.3	11
227	Automated segmentation of anterior lamina cribrosa surface: How the lamina cribrosa responds to intraocular pressure change in glaucoma eyes?. , 2015, , .		10
228	RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure. Scientific Reports, 2021, 11, 12562.	3.3	10
229	A Portable Platform for Evaluation of Visual Performance in Glaucoma Patients. PLoS ONE, 2015, 10, e0139426.	2.5	10
230	A Case for the Use of Artificial Intelligence in Glaucoma Assessment. Ophthalmology Glaucoma, 2022, 5, e3-e13.	1.9	10
231	Qualitative Evaluation of the 10-2 and 24-2 Visual Field Tests for Detecting Central Visual Field Abnormalities in Glaucoma. American Journal of Ophthalmology, 2021, 229, 26-33.	3.3	9
232	Corneal hysteresis: ready for prime time?. Current Opinion in Ophthalmology, 2022, 33, 243-249.	2.9	9
233	Twenty-four-hour intraocular pressure patterns in a symptomatic patient after ab interno trabeculotomy surgery. Clinical Ophthalmology, 2014, 8, 2195.	1.8	8
234	Mobile Telephone Use and Reaction Time in Drivers With Glaucoma. JAMA Network Open, 2019, 2, e192169.	5.9	8

#	Article	IF	CITATIONS
235	Specificity of various cluster criteria used for the detection of glaucomatous visual field abnormalities. British Journal of Ophthalmology, 2020, 104, 822-826.	3.9	7
236	Comparing the Rule of 5 to Trend-based Analysis for Detecting Glaucoma Progression on OCT. Ophthalmology Glaucoma, 2020, 3, 414-420.	1.9	7
237	A simplified combined index of structure and function for detecting and staging glaucomatous damage. Scientific Reports, 2021, 11, 3172.	3.3	7
238	Fear of falling and postural reactivity in patients with glaucoma. PLoS ONE, 2017, 12, e0187220.	2.5	7
239	Is Scanning Laser Polarimetry Ready for Clinical Practice?. American Journal of Ophthalmology, 2007, 143, 674-676.	3.3	6
240	Scanning Laser Polarimetry with Enhanced Corneal Compensation for Detection of Axonal Loss in Band Atrophy of the Optic Nerve. American Journal of Ophthalmology, 2008, 145, 747-754.e2.	3.3	6
241	Asymmetric Macular Structural Damage Is Associated With Relative Afferent Pupillary Defects in Patients With Glaucoma. , 2016, 57, 1738.		6
242	Comparing optical coherence tomography radial and cube scan patterns for measuring Bruch's membrane opening minimum rim width (BMO-MRW) in glaucoma and healthy eyes: cross-sectional and longitudinal analysis. British Journal of Ophthalmology, 2018, 102, 344-351.	3.9	6
243	Effect of Diabetes Control on Rates of Structural and Functional Loss in Patients with Glaucoma. Ophthalmology Glaucoma, 2021, 4, 216-223.	1.9	6
244	Estimated Utility of the Short-term Assessment of Glaucoma Progression Model in Clinical Practice. JAMA Ophthalmology, 2021, 139, 839.	2.5	6
245	Risk Assessment in Glaucoma and Ocular Hypertension. International Ophthalmology Clinics, 2008, 48, 1-12.	0.7	5
246	Detection of retinal nerve fibre layer progression: comparison of the fast and extended modes of GDx guided progression analysis. British Journal of Ophthalmology, 2011, 95, 1707-1712.	3.9	5
247	Advances in the Structural Evaluation of Glaucoma with Optical Coherence Tomography. Current Ophthalmology Reports, 2013, 1, 98-105.	1.2	5
248	Logâ€gamma linearâ€mixed effects models for multiple outcomes with application to a longitudinal glaucoma study. Biometrical Journal, 2015, 57, 766-776.	1.0	5
249	Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1227-1234.	1.9	5
250	Psychometric properties of the Portuguese version of the National Eye Institute Visual Function Questionnaire-25. PLoS ONE, 2019, 14, e0226086.	2.5	5
251	The Relationship Between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients. Journal of Glaucoma, 2020, 29, 872-877.	1.6	5
252	Repeatability and reproducibility of optic nerve head topography using the retinal thickness analyzer. Graefe's Archive for Clinical and Experimental Ophthalmology, 2006, 244, 192-198.	1.9	4

#	Article	IF	CITATIONS
253	African Descent and Glaucoma Evaluation Study. Journal of Glaucoma, 2013, 22, 65-72.	1.6	4
254	Reply. Ophthalmology, 2018, 125, e42.	5.2	4
255	Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study. , 2021, 62, 12.		4
256	Detecting Glaucoma Progression From Localized Rates of Retinal Changes in Parametric and Nonparametric Statistical Framework With Type I Error Control. , 2014, 55, 1684.		3
257	Association Between Rate of Binocular Visual Field Change and Vision-Related Quality of Life—Reply. JAMA Ophthalmology, 2014, 132, 785.	2.5	2
258	Corneal Hysteresis and Rates of Neuroretinal Rim Change in Glaucoma. Ophthalmology Glaucoma, 2022, 5, 483-489.	1.9	2
259	The promise of spectral-domain optical coherence tomography. Expert Review of Ophthalmology, 2008, 3, 501-504.	0.6	1
260	Assessing driving risk in patients with glaucoma. Arquivos Brasileiros De Oftalmologia, 2019, 82, 245-252.	0.5	1
261	Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces. Bayesian Analysis, 2021, -1, .	3.0	1
262	Association between statin use and rates of structural and functional loss in glaucoma. British Journal of Ophthalmology, 2023, 107, 1269-1274.	3.9	1
263	Bimatoprost. Ophthalmology, 2005, 112, 1478.	5.2	0
264	Author reply. Ophthalmology, 2013, 120, e85-e86.	5.2	0
265	Function-Specific Perimetry. , 2015, , 132-148.		0
266	Optic Disc Imaging. , 2015, , 221-243.		0
267	Reply. Ophthalmology, 2016, 123, e38.	5.2	0
268	Reply. Ophthalmology, 2017, 124, e21.	5.2	0
269	Acute Angle Closure Glaucoma in Von Hippel-Lindau Syndrome. Ophthalmology, 2019, 126, 691.	5.2	0

#	Article	IF	CITATIONS
271	Title is missing!. , 2019, 14, e0226086.		0
272	Title is missing!. , 2019, 14, e0226086.		0
273	Title is missing!. , 2019, 14, e0226086.		0
274	Title is missing!. , 2019, 14, e0226086.		0
275	Title is missing!. , 2019, 14, e0226086.		0
276	Association between Serum Vitamin D Level and Rates of Structural and Functional Glaucomatous Progression. Journal of Glaucoma, 2022, Publish Ahead of Print, .	1.6	0