
James M Curran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12012980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimensionality reduction of multielement glass evidence to calculate likelihood ratios. Journal of Chemometrics, 2021, 35, .	0.7	4
2	Modeling allelic analyte signals for aSTRs in NGS DNA profiles. Journal of Forensic Sciences, 2021, 66, 1234-1245.	0.9	8
3	Are low LRs reliable?. Forensic Science International: Genetics, 2020, 49, 102350.	1.6	10
4	Variability and additivity of read counts for aSTRs in NGS DNA profiles. Forensic Science International: Genetics, 2020, 48, 102351.	1.6	5
5	Testing whether stutter and low-level DNA peaks are additive. Forensic Science International: Genetics, 2019, 43, 102166.	1.6	7
6	Multi-element comparisons of tapes evidence using dimensionality reduction for calculating likelihood ratios. Forensic Science International, 2019, 301, 426-434.	1.3	6
7	A response to "Likelihood ratio as weight of evidence: A closer look―by Lund and Iyer. Forensic Science International, 2018, 288, e15-e19.	1.3	12
8	Comparison of intra-day and inter-day variation in LIBS spectra. Forensic Chemistry, 2017, 3, 36-40.	1.7	13
9	Importance sampling allows Hd true tests of highly discriminating DNA profiles. Forensic Science International: Genetics, 2017, 27, 74-81.	1.6	14
10	Admitting to uncertainty in the LR. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 380-382.	1.3	17
11	Uncertainty in the number of contributors in the proposed new CODIS set. Forensic Science International: Genetics, 2015, 19, 207-211.	1.6	33
12	The variability in likelihood ratios due to different mechanisms. Forensic Science International: Genetics, 2015, 14, 187-190.	1.6	27
13	A series of recommended tests when validating probabilistic DNA profile interpretation software. Forensic Science International: Genetics, 2015, 14, 125-131.	1.6	36
14	Identifying and modelling the drivers of stutter in forensic DNA profiles. Australian Journal of Forensic Sciences, 2014, 46, 194-203.	0.7	10
15	The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation. Forensic Science International: Genetics, 2014, 12, 208-214.	1.6	44
16	Investigation into stutter ratio variance. Australian Journal of Forensic Sciences, 2014, 46, 313-316.	0.7	0
17	Investigation into stutter ratio variability between different laboratories. Forensic Science International: Genetics, 2014, 13, 79-81.	1.6	16
18	Variability of mixed DNA profiles separated on a 3130 and 3500 capillary electrophoresis instrument. Australian Journal of Forensic Sciences, 2014, 46, 304-312.	0.7	19

JAMES M CURRAN

#	Article	IF	CITATIONS
19	Likelihood ratio calculation for a disputed-utterance analysis with limited available data. Speech Communication, 2014, 58, 81-90.	1.6	9
20	Helping formulate propositions in forensic DNA analysis. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 258-261.	1.3	27
21	A comparison of statistical models for the analysis of complex forensic DNA profiles. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 66-70.	1.3	54
22	Modelling PowerPlex® Y stutter and artefacts. Forensic Science International: Genetics, 2014, 11, 126-136.	1.6	9
23	Utilising allelic dropout probabilities estimated by logistic regression in casework. Forensic Science International: Genetics, 2014, 9, 9-11.	1.6	23
24	Characterising the STR locus D6S1043 and examination of its effect on stutter rates. Forensic Science International: Genetics, 2014, 8, 20-23.	1.6	21
25	Uncertainty in the number of contributors for the European Standard Set of loci. Forensic Science International: Genetics, 2014, 11, 205-206.	1.6	14
26	Modeling forward stutter: Toward increased objectivity in forensic <scp>DNA</scp> interpretation. Electrophoresis, 2014, 35, 3152-3157.	1.3	22
27	Developing allelic and stutter peak height models for a continuous method of DNA interpretation. Forensic Science International: Genetics, 2013, 7, 296-304.	1.6	130
28	Consideration of the probative value of single donor 15-plex STR profiles in UK populations and its presentation in UK courts II. Science and Justice - Journal of the Forensic Science Society, 2013, 53, 371.	1.3	3
29	Investigation into the performance of different models for predicting stutter. Forensic Science International: Genetics, 2013, 7, 422-427.	1.6	27
30	Degradation of forensic DNA profiles. Australian Journal of Forensic Sciences, 2013, 45, 445-449.	0.7	56
31	Modelling heterozygote balance in forensic DNA profiles. Forensic Science International: Genetics, 2012, 6, 729-734.	1.6	33
32	Consideration of the probative value of single donor 15-plex STR profiles in UK populations and its presentation in UK courts. Science and Justice - Journal of the Forensic Science Society, 2012, 52, 185-190.	1.3	16
33	An investigation into the performance of methods for adjusting for sampling uncertainty in DNA likelihood ratio calculations. Forensic Science International: Genetics, 2011, 5, 512-516.	1.6	15
34	Modeling Forensic DNA Database Performance*. Journal of Forensic Sciences, 2010, 55, 1174-1183.	0.9	13
35	Re: Sign mistake in allele sharing probability formulae of Curran, et al Forensic Science International: Genetics, 2010, 4, 215-217.	1.6	0
36	Compositional data analysis for elemental data in forensic science. Forensic Science International, 2009, 188, 81-90.	1.3	28

3

JAMES M CURRAN

#	Article	IF	CITATIONS
37	Statistics in forensic science. Wiley Interdisciplinary Reviews: Computational Statistics, 2009, 1, 141-156.	2.1	7
38	The interpretation of elemental composition measurements from forensic glass evidence III. Science and Justice - Journal of the Forensic Science Society, 2009, 49, 2-7.	1.3	25
39	A MCMC method for resolving two person mixtures. Science and Justice - Journal of the Forensic Science Society, 2008, 48, 168-177.	1.3	45
40	Empirical support for the reliability of DNA evidence interpretation in Australia and New Zealand. Australian Journal of Forensic Sciences, 2008, 40, 99-108.	0.7	8
41	Towards understanding the effect of uncertainty in the number of contributors to DNA stains. Forensic Science International: Genetics, 2007, 1, 20-28.	1.6	82
42	Empirical testing of estimated DNA frequencies. Forensic Science International: Genetics, 2007, 1, 267-272.	1.6	23
43	The extent of substructure in the indigenous Australian population and its impact on DNA evidence interpretation. International Congress Series, 2006, 1288, 382-384.	0.2	3
44	How reliable is the sub-population model in DNA testimony?. Forensic Science International, 2006, 157, 144-148.	1.3	27
45	An introduction to Bayesian credible intervals for sampling error in DNA profiles. Law, Probability and Risk, 2005, 4, 115-126.	1.2	50
46	What is the magnitude of the subpopulation effect?. Forensic Science International, 2003, 135, 1-8.	1.3	43
47	Comparison of the variables affecting the recovery of DNA from common drinking containers. Forensic Science International, 2002, 126, 233-240.	1.3	39
48	Interpreting DNA Mixtures in Structured Populations. Journal of Forensic Sciences, 1999, 44, 987-995.	0.9	82