T G Sitharam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12012835/publications.pdf Version: 2024-02-01

Τ. С. SITHADAM

#	Article	IF	CITATIONS
1	Strong Motion Data Based Regional Ground Motion Prediction Equations for North East India Based on Non-Linear Regression Models. Journal of Earthquake Engineering, 2022, 26, 2927-2947.	1.4	16
2	Stability Analysis of Tailings Dam Using Finite Element Approach and Conventional Limit Equilibrium Approach. Lecture Notes in Civil Engineering, 2022, , 91-103.	0.3	0
3	Development of New Ground Motion Prediction Equation for the North and Central Himalayas Using Recorded Strong Motion Data. Journal of Earthquake Engineering, 2021, 25, 1903-1926.	1.4	27
4	Appraisal of Thanneermukkom bund as a coastal reservoir in Kuttanad, Kerala. Journal of Applied Water Engineering and Research, 2021, 9, 324-335.	1.0	3
5	Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations. Bulletin of Engineering Geology and the Environment, 2021, 80, 8137-8157.	1.6	8
6	Liquefaction Behavior of Low to Medium Plasticity Sand-Fines Mixtures. Lecture Notes in Civil Engineering, 2021, , 181-191.	0.3	0
7	Ground Response Analysis of a Nuclear Power Plant Site in Southern India: A Nonlinear Approach. Lecture Notes in Civil Engineering, 2021, , 441-456.	0.3	0
8	Deterministic seismic hazard analysis of north and central Himalayas using region-specific ground motion prediction equations. Journal of Earth System Science, 2021, 130, 1.	0.6	2
9	Analysis of laterally loaded group of piles located on sloping ground. International Journal of Geotechnical Engineering, 2020, 14, 580-588.	1.1	23
10	Performance of Bamboo Geocells in Soft Ground Engineering Applications. Springer Transactions in Civil and Environmental Engineering, 2020, , 429-449.	0.3	1
11	Synthesis of Linear JTFA-Based Response Spectra for Structural Response and Seismic Reduction Measures for North-East India. Journal of Earthquake and Tsunami, 2020, 14, 2050023.	0.7	6
12	Protection of Buried Pipelines and Underground Utilities Using Geocells. Springer Transactions in Civil and Environmental Engineering, 2020, , 341-365.	0.3	0
13	Estimation and spatial mapping of seismicity parameters in western Himalaya, central Himalaya and Indo-Gangetic plain. Journal of Earth System Science, 2019, 128, 1.	0.6	7
14	Geotechnical considerations for the concept of coastal reservoir at Mangaluru to impound the flood waters of Netravati River. Marine Georesources and Geotechnology, 2019, 37, 236-244.	1.2	7
15	Resonant Column Tests and Nonlinear Elasticity in Simulated Rocks. Rock Mechanics and Rock Engineering, 2018, 51, 155-172.	2.6	6
16	Effect of Slope on p-y Curves for Laterally Loaded Piles in Soft Clay. Geotechnical and Geological Engineering, 2018, 36, 1509-1524.	0.8	28
17	Comprehensive Seismic Zonation Schemes for Regions at Different Scales. , 2018, , .		5
18	Seismic Site Characterization. , 2018, , 45-73.		0

#	Article	IF	CITATIONS
19	Liquefaction. , 2018, , 109-146.		Ο
20	Local Site Effects for Seismic Zonation. , 2018, , 75-108.		1
21	Earthquake and Seismicity. , 2018, , 11-31.		0
22	Seismic Hazard Analysis. , 2018, , 33-44.		0
23	Principles and Practices of Seismic Zonation. , 2018, , 147-166.		1
24	Geotechnical Investigations for Evaluating the Performance of the Misaligned MSE Wall: a Case Study. Transportation Infrastructure Geotechnology, 2018, 5, 332-348.	1.9	1
25	Earthquakes: The Indian Context. SpringerBriefs in Environmental Science, 2018, , 1-16.	0.3	0
26	Detection of Local Site Conditions in Tripura and Mizoram Using the Topographic Gradient Extracted from Remote Sensing Data and GIS Techniques. Natural Hazards Review, 2017, 18, .	0.8	3
27	Stability analysis of rock-fill tailing dam: an Indian case study. International Journal of Geotechnical Engineering, 2017, 11, 332-342.	1.1	22
28	Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 2017, 220, 1-12.	3.7	349
29	Development of Non-dimension p–y Curves for Laterally Loaded Piles in Sloping Ground. Indian Geotechnical Journal, 2017, 47, 47-56.	0.7	20
30	Numerical Simulation of Resonant Column Tests on Jointed Rocks Using DEM. Springer Proceedings in Physics, 2017, , 889-896.	0.1	1
31	Influence of sand and low plasticity clay mixtures on the liquefaction and postliquefaction behavior. Japanese Geotechnical Society Special Publication, 2016, 2, 806-810.	0.2	2
32	Effect of frequency of cyclic loading on liquefaction and dynamic properties of saturated sand. International Journal of Geotechnical Engineering, 2016, 10, 487-492.	1.1	26
33	Use of Geocells to Protect Buried Pipelines and Underground Utilities in Soft Clayey Soils. , 2016, , .		5
34	Response of laterally loaded pile in soft clay on sloping ground. International Journal of Geotechnical Engineering, 2016, 10, 10-22.	1.1	43
35	Long-wavelength propagation of waves in jointed rocks - study using resonant column experiments and model material. Geomechanics and Geoengineering, 2016, 11, 281-296.	0.9	8
36	A Revisit to Seismic Hazard at Uttarakhand. International Journal of Geotechnical Earthquake Engineering, 2015, 6, 56-73.	0.3	9

#	Article	IF	CITATIONS
37	Long Wavelength Propagation of Elastic Waves Across Frictional and Filled Rock Joints with Different Orientations: Experimental Results. Geotechnical and Geological Engineering, 2015, 33, 923-934.	0.8	7
38	Use of Bamboo in Soft-Ground Engineering and Its Performance Comparison with Geosynthetics: Experimental Studies. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	58
39	Experimental and Analytical Studies on Soft Clay Beds Reinforced with Bamboo Cells and Geocells. International Journal of Geosynthetics and Ground Engineering, 2015, 1, 1.	0.9	42
40	Probabilistic Models for Forecasting Earthquakes in the Northeast Region of India. Bulletin of the Seismological Society of America, 2015, 105, 2910-2927.	1.1	21
41	Joint Strength and Wall Deformation Characteristics of a Single-Cell Geocell Subjected to Uniaxial Compression. International Journal of Geomechanics, 2015, 15, .	1.3	35
42	Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test â€ĩN' Values for the City of Agartala, Tripura State, India. Pure and Applied Geophysics, 2014, 171, 1859-1876.	0.8	33
43	Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Natural Hazards, 2014, 71, 419-462.	1.6	23
44	Probabilistic Liquefaction Potential Evaluation for India and Adjoining Areas. Indian Geotechnical Journal, 2014, 44, 269-277.	0.7	9
45	Comprehensive seismic hazard assessment of Tripura and Mizoram states. Journal of Earth System Science, 2014, 123, 837-857.	0.6	53
46	Assessment of Seismically Induced Landslide Hazard for the State of Karnataka Using GIS Technique. Journal of the Indian Society of Remote Sensing, 2014, 42, 73-89.	1.2	11
47	Seismic hazard analysis of Lucknow considering local and active seismic gaps. Natural Hazards, 2013, 69, 327-350.	1.6	47
48	Probabilistic seismic hazard analysis of Tripura and Mizoram states. Natural Hazards, 2013, 68, 1089-1108.	1.6	46
49	Seismic Site Classification and Correlation between Standard Penetration Test N Value and Shear Wave Velocity for Lucknow City in Indo-Gangetic Basin. Pure and Applied Geophysics, 2013, 170, 299-318.	0.8	97
50	Postliquefaction Undrained Shear Behavior of Sand-Silt Mixtures at Constant Void Ratio. International Journal of Geomechanics, 2013, 13, 421-429.	1.3	24
51	Delineation of seismic source zones based on seismicity parameters and probabilistic evaluation of seismic hazard using logic tree approach. Journal of Earth System Science, 2013, 122, 661-676.	0.6	10
52	Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches. Natural Hazards, 2013, 65, 1179-1195.	1.6	10
53	Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 2013, 7, 346-354.	1.1	78
54	Comprehensive Probabilistic Seismic Hazard Analysis of the Andaman-Nicobar Regions. Bulletin of the Seismological Society of America, 2012, 102, 2063-2076.	1.1	25

#	Article	IF	CITATIONS
55	Characterization of Regional Seismic Source Zones in and around India. Seismological Research Letters, 2012, 83, 77-85.	0.8	49
56	Deterministic seismic hazard macrozonation of India. Journal of Earth System Science, 2012, 121, 1351-1364.	0.6	64
57	A study on seismicity and seismic hazard for Karnataka State. Journal of Earth System Science, 2012, 121, 475-490.	0.6	20
58	Spatial variation of seismicity parameters across India and adjoining areas. Natural Hazards, 2012, 60, 1365-1379.	1.6	47
59	Support Vector Classifiers for Prediction of Pile Foundation Performance in Liquefied Ground During Earthquakes. International Journal of Geotechnical Earthquake Engineering, 2012, 3, 42-59.	0.3	3
60	Undrained Cyclic and Monotonic Strength of Sand-Silt Mixtures. Geotechnical and Geological Engineering, 2011, 29, 555-570.	0.8	18
61	Evaluation of spatial variation of peak horizontal acceleration and spectral acceleration for south India: a probabilistic approach. Natural Hazards, 2011, 59, 639-653.	1.6	19
62	Probabilistic evaluation of seismic soil liquefaction potential based on SPT data. Natural Hazards, 2010, 53, 547-560.	1.6	18
63	Evaluation of Shear Modulus and Damping Ratio of Granular Materials Using Discrete Element Approach. Geotechnical and Geological Engineering, 2010, 28, 591-601.	0.8	34
64	Site Characterization Model Using Artificial Neural Network and Kriging. International Journal of Geomechanics, 2010, 10, 171-180.	1.3	44
65	Seismic Site Classification Using Boreholes and Shear Wave Velocity: Assessing the Suitable Method for Shallow Engineering Rock Region. , 2010, , .		2
66	Evaluation of Peak Ground Acceleration and Response Spectra Considering the Local Site Effects. International Journal of Geotechnical Earthquake Engineering, 2010, 1, 25-41.	0.3	4
67	Estimation of peak ground acceleration and spectral acceleration for South India with local site effects: probabilistic approach. Natural Hazards and Earth System Sciences, 2009, 9, 865-878.	1.5	83
68	Numerical simulation of geocell-reinforced sand and clay. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2009, 162, 185-198.	0.7	39
69	Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations. Granular Matter, 2009, 11, 33-42.	1.1	55
70	Probabilistic seismic hazard analysis for Bangalore. Natural Hazards, 2009, 48, 145-166.	1.6	106
71	Undrained Cyclic Pore Pressure Response of Sand–Silt Mixtures: Effect of Nonplastic Fines and Other Parameters. Geotechnical and Geological Engineering, 2009, 27, 501-517.	0.8	47
72	Spatial Variability of the Depth of Weathered and Engineering Bedrock using Multichannel Analysis of Surface Wave Method. Pure and Applied Geophysics, 2009, 166, 409-428.	0.8	60

#	Article	IF	CITATIONS
73	Seismic microzonation of Bangalore, India. Journal of Earth System Science, 2008, 117, 833-852.	0.6	58
74	OCR Prediction Using Support Vector Machine Based on Piezocone Data. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2008, 134, 894-898.	1.5	44
75	Practical Equivalent Continuum Model for Simulation of Jointed Rock Mass Using FLAC3D. International Journal of Geomechanics, 2007, 7, 389-395.	1.3	40
76	Seismic Hazard Analysis for the Bangalore Region. Natural Hazards, 2007, 40, 261-278.	1.6	90
77	Effects of base geogrid on geocell-reinforced foundation beds. Geomechanics and Geoengineering, 2006, 1, 207-216.	0.9	14
78	Use of remote sensing and seismotectonic parameters for seismic hazard analysis of Bangalore. Natural Hazards and Earth System Sciences, 2006, 6, 927-939.	1.5	36
79	Model studies of a circular footing supported on geocell-reinforced clay. Canadian Geotechnical Journal, 2005, 42, 693-703.	1.4	94
80	Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method. Journal of Earth System Science, 2003, 112, 479-484.	0.6	21
81	Characterization of Strength and Deformation of Jointed Rock Mass Based on Statistical Analysis. International Journal of Geomechanics, 2003, 3, 43-54.	1.3	36
82	Behaviour of geocell-reinforced sand beds under circular footing. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2003, 7, 111-115.	0.7	52
83	Behaviour of geocell-reinforced sand beds under circular footing. Ground Improvement, 2003, 7, 111-115.	0.2	15
84	Nonlinear Finite-Element Modeling of Batter Piles under Lateral Load. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2001, 127, 604-612.	1.5	76