Howard Bussey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12011912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	13.7	3,938
2	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	6.0	3,761
3	Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 2001, 294, 2364-2368.	6.0	1,946
4	The Genetic Landscape of a Cell. Science, 2010, 327, 425-431.	6.0	1,937
5	Global Mapping of the Yeast Genetic Interaction Network. Science, 2004, 303, 808-813.	6.0	1,908
6	An in Vivo Map of the Yeast Protein Interactome. Science, 2008, 320, 1465-1470.	6.0	681
7	Cell Wall Assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2006, 70, 317-343.	2.9	673
8	Exploring genetic interactions and networks with yeast. Nature Reviews Genetics, 2007, 8, 437-449.	7.7	541
9	Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Molecular Microbiology, 2003, 50, 167-181.	1.2	461
10	Large Scale Identification of Genes Involved in Cell Surface Biosynthesis and Architecture in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 147, 435-450.	1.2	350
11	<i>Saccharomyces cerevisiae</i> Mid2p Is a Potential Cell Wall Stress Sensor and Upstream Activator of the <i>PKC1-MPK1</i> Cell Integrity Pathway. Journal of Bacteriology, 1999, 181, 3330-3340.	1.0	243
12	Sequence of the preprotoxin dsRNA gene of type I killer yeast: Multiple processing events produce a two-component toxin. Cell, 1984, 36, 741-751.	13.5	242
13	Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15682-15687.	3.3	225
14	Genome-Wide Fitness Test and Mechanism-of-Action Studies of Inhibitory Compounds in Candida albicans. PLoS Pathogens, 2007, 3, e92.	2.1	215
15	Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and α-factor precursor processing. Cell, 1987, 50, 573-584.	13.5	199
16	Cell Wall Receptor for Yeast Killer Toxin: Involvement of (1 → 6)-β- d -Glucan. Journal of Bacteriology, 1983, 154, 161-169.	1.0	188
17	β-1,6-Clucan synthesis in Saccharomyces cerevisiae. Molecular Microbiology, 2002, 35, 477-489.	1.2	156
18	Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. Journal of Biology, 2005, 4, 6.	2.7	154

#	Article	IF	CITATIONS
19	Analysis of β-1,3-Glucan Assembly in Saccharomyces cerevisiae Using a Synthetic Interaction Network and Altered Sensitivity to Caspofungin. Genetics, 2004, 167, 35-49.	1.2	149
20	A <i>Saccharomyces cerevisiae</i> Genome-Wide Mutant Screen for Altered Sensitivity to K1 Killer Toxin. Genetics, 2003, 163, 875-894.	1.2	148
21	Physiology of Killer Factor in Yeast. Advances in Microbial Physiology, 1981, 22, 93-122.	1.0	137
22	Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology (United Kingdom), 1998, 144, 425-432.	0.7	137
23	Yeast Killer Toxin: Purification and Characterisation of the Protein Toxin from Saccharomyces cerevisiae. FEBS Journal, 1979, 93, 487-493.	0.2	124
24	The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - General Subjects, 1999, 1426, 323-334.	1.1	123
25	Effects of Yeast Killer Factor on Sensitive Cells. Nature: New Biology, 1972, 235, 73-75.	4.5	119
26	Proteases and the processing of precursors to secreted proteins in yeast. Yeast, 1988, 4, 17-26.	0.8	109
27	An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae. BMC Genetics, 2005, 6, 8.	2.7	105
28	Regulation of cell wallβ-glucan assembly:PTC1 Negatively affectsPBS2 Action in a pathway that includes modulation ofEXG1 transcription. Molecular Genetics and Genomics, 1995, 248, 260-269.	2.4	97
29	Yeast killer toxin: Site-directed mutations implicate the precursor protein as the immunity component. Cell, 1986, 46, 105-113.	13.5	95
30	Yeast arginine permease: nucleotide sequence of the CAN1 gene. Current Genetics, 1986, 10, 587-592.	0.8	95
31	A new family of yeast genes implicated in ergosterol synthesis is related to the human oxysterol binding protein. Yeast, 1994, 10, 341-353.	0.8	93
32	TheALD6 gene ofSaccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase. , 1997, 13, 1319-1327.		91
33	Bud8p and Bud9p, Proteins That May Mark the Sites for Bipolar Budding in Yeast. Molecular Biology of the Cell, 2001, 12, 2497-2518.	0.9	90
34	Protein O-Glycosylation in Yeast. Journal of Biological Chemistry, 1995, 270, 2770-2775.	1.6	88
35	The Ktr1p, Ktr3p, and Kre2p/Mnt1p Mannosyltransferases Participate in the Elaboration of Yeast O- andN-linked Carbohydrate Chains. Journal of Biological Chemistry, 1997, 272, 15527-15531.	1.6	86
36	Yeast killer factor: ATP leakage and coordinate inhibition of macromolecular synthesis in sensitive cells. Biochimica Et Biophysica Acta - Biomembranes, 1973, 298, 868-875.	1.4	76

#	Article	IF	CITATIONS
37	Mutations in Fks1p affect the cell wall content of ?-1,3- and ?-1,6-glucan inSaccharomyces cerevisiae. Yeast, 2002, 19, 671-690.	0.8	73
38	KRE5 Gene Null Mutant Strains of Candida albicans Are Avirulent and Have Altered Cell Wall Composition and Hypha Formation Properties. Eukaryotic Cell, 2004, 3, 1423-1432.	3.4	73
39	A Screen for Genes of Heme Uptake Identifies the FLC Family Required for Import of FAD into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2006, 281, 21445-21457.	1.6	64
40	The yeast CWH41 gene encodes glucosidase I. Glycobiology, 1997, 7, 997-1004.	1.3	62
41	Functional Characterization of the YUR1, KTR1, and KTR2 Genes as Members of the Yeast KRE2/MNT1 Mannosyltransferase Gene Family. Journal of Biological Chemistry, 1996, 271, 11001-11008.	1.6	59
42	Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene, 2001, 20, 5279-5290.	2.6	59
43	Involvement of Protein N-Glycosyl Chain Glucosylation and Processing in the Biosynthesis of Cell Wall β-1,6-Glucan of Saccharomyces cerevisiae. Genetics, 1998, 149, 843-856.	1.2	56
44	Action of Yeast Killer Factor: a Resistant Mutant with Sensitive Spheroplasts. Journal of Bacteriology, 1973, 113, 1193-1197.	1.0	53
45	Biosynthesis of Branched-Chain Amino Acids in Yeast: Regulation of Synthesis of the Enzymes of Isoleucine and Valine Biosynthesis. Journal of Bacteriology, 1969, 98, 623-628.	1.0	49
46	The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9. , 1996, 12, 683-692.		48
47	Ktr1p is an α-1,2-mannosyltransferase of Saccharomyces cerevisiae. Comparison of the enzymic properties of soluble recombinant Ktr1p and Kre2p/Mnt1p produced in Pichia pastoris. Biochemical Journal, 1997, 321, 289-295.	1.7	47
48	Completion of theSaccharomyces cerevisiae Genome Sequence Allows Identification ofKTR5,KTR6 andKTR7 and Definition of the Nine-MemberedKRE2/MNT1 Mannosyltransferase Gene Family in this Organism. , 1997, 13, 267-274.		47
49	A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1–MPK1 cell integrity pathway. Microbiology (United Kingdom), 2003, 149, 2487-2499.	0.7	46
50	Saccharomyces cerevisiae killer expression mutant kex2 has altered secretory proteins and glycoproteins. Biochemical and Biophysical Research Communications, 1979, 90, 187-193.	1.0	40
51	The K1 Toxin of Saccharomyces cerevisiae Kills Spheroplasts of Many Yeast Species. Applied and Environmental Microbiology, 1989, 55, 2105-2107.	1.4	38
52	Anin vitroassay for (1 → 6)-β-D-glucan synthesis inSaccharomyces cerevisiae. Yeast, 2004, 21, 1121-1131.	0.8	36
53	Mutual antagonism among killer yeasts: competition between Kl and K2 killers and a novel cDNA-based K1-K2 killer strain of Saccharomyces cerevisiae. Canadian Journal of Microbiology, 1988, 34, 38-44.	0.8	33
54	Yeast Kre1p is a cell surface O-glycoprotein. Molecular Genetics and Genomics, 1995, 249, 209-216.	2.4	33

#	Article	IF	CITATIONS
55	Selection and stability of yeast transformants expressing cDNA of an Ml killer toxin-immunity gene. Current Genetics, 1985, 9, 285-291.	0.8	32
56	Yeast plasma membrane ghosts. An analysis of proteins by two-dimensional gel electrophoresis. Biochimica Et Biophysica Acta - Biomembranes, 1979, 553, 185-196.	1.4	30
57	Identification of aSaccharomyces cerevisiae homolog of theSNF2 transcrioptional regulator in the DNA sequence of an 8·6 kb region in theLTE1-CYS1 interval on the left arm of chormosome I. Yeast, 1992, 8, 133-145.	0.8	30
58	Sequencing of chromosome I from Saccharomyces cerevisiae: analysis of a 32â€,kb region between the LTE1 and SPO7 genes. Genome, 1993, 36, 32-42.	0.9	30
59	KTR2: A new member of theKRE2 mannosyltransferase gene family. Yeast, 1993, 9, 1057-1063.	0.8	28
60	Saccharomyces cerevisiaeBig1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall l²-1,6-glucan. Yeast, 2002, 19, 783-793.	0.8	28
61	Biosynthesis of the Branched-Chain Amino Acids in Yeast: a Trifluoroleucine-Resistant Mutant with Altered Regulation of Leucine Uptake. Journal of Bacteriology, 1970, 103, 286-294.	1.0	26
62	lsolation of <i>Candida glabrata</i> Homologs of the <i>Saccharomyces cerevisiae KRE9</i> and <i>KNH1</i> Genes and Their Involvement in Cell Wall β-1,6-Glucan Synthesis. Journal of Bacteriology, 1998, 180, 5020-5029.	1.0	26
63	Protein secretion in yeast: Two chromosomal mutants that oversecrete killer toxin in Saccharomyces cerevisiae. Current Genetics, 1983, 7, 449-456.	0.8	24
64	Novel strategies in antifungal lead discovery. Current Opinion in Microbiology, 2002, 5, 466-471.	2.3	22
65	Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact withcis-Golgi protein Kre6p. Yeast, 2002, 19, 1097-1112.	0.8	22
66	Functional, comparative and cell biological analysis ofSaccharomyces cerevisiae Kre5p. Yeast, 2002, 19, 1243-1259.	0.8	22
67	Integrative studies put cell wall synthesis on the yeast functional map. Current Opinion in Microbiology, 2004, 7, 617-623.	2.3	21
68	Molecular Cloning of Chromosome I DNA fromSaccharomyces cerevisiae: Characterization of the 54 kb Right TerminalCDC15-FLO1-PHO11 Region. Yeast, 1997, 13, 1251-1263.	0.8	17
69	Identification of ASK10 as a multicopy activator of Skn7p-dependent transcription of a HIS3 reporter gene. Yeast, 1996, 12, 267-272.	0.8	16
70	l. Yeast sequencing reports.LTE1 ofSaccharomyces cerevisiae is a 1435 codon open reading frame that has sequence similarities to guanine nucleotide releasing factors. Yeast, 1994, 10, 953-958.	0.8	15
71	Physical localization of yeastCYS3, a gene whose product resembles the rat γ-cystathionase andEscherichia coli cystathionine γ-synthase enzymes. Yeast, 1993, 9, 363-369.	0.8	14
72	Genetic interaction network of the Saccharomyces cerevisiae type 1 phosphatase Glc7. BMC Genomics, 2008, 9, 336.	1.2	14

#	Article	IF	CITATIONS
73	From worm genetic networks to complex human diseases. Nature Genetics, 2006, 38, 862-863.	9.4	13
74	A model for stably inherited environmentally induced changes in plants. Nature, 1974, 251, 708-710.	13.7	12
75	I. Yeast sequencing reports. Sequencing of chromosome I ofSaccharomyces cerevisiae: Analysis of the 42 kbpSP07-CENI-CDC15 region. Yeast, 1994, 10, 535-541.	0.8	9
76	XVI. Yeast sequencing reports. DNA sequence analysis of a 10·4 kbp region on the right arm of yeast chromosome XVI positionsGPH1 andSGV1 adjacent toKRE6, and identifies two novel tRNA genes. Yeast, 1994, 10, 1527-1530.	0.8	5
77	Theyal017 gene on the left arm of chromosome I ofSaccharomyces cerevisiae encodes a putative serine/threonine protein kinase. Yeast, 1993, 9, 543-549.	0.8	4
78	Analysis of a 103â€,kbp cluster homology region from the left end of <i>Saccharomyces cerevisiae</i> chromosome I. Genome, 1997, 40, 151-164.	0.9	4
79	Guest Editorial: 1997 ushers in an era of yeast functional genomics. , 1997, 13, 1501-1503.		3
80	Functional Genomic Approaches to Fungal Pathogenesis, Drug Target Validation, and Antifungal Drug Discovery. , 0, , 627-642.		1
81	Functional analysis of a 38 kilobase region on chromosome XVI in Saccharomyces cerevisiae. Genes and Function, 1997, 1, 273-284.	2.8	0
82	Identification of FLC family of proteins required for import of FAD into the endoplasmic reticulum in a screen for heme uptake genes. FASEB Journal, 2007, 21, A244.	0.2	0
83	The Yeast KEX1 Gene Product Acts as a Carboxypeptidase B-Like Protease in Processing Secreted Protein Precursors. 1988. 215-223.		0