Felicidad Ronda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1201029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of dietary fibre on dough rheology and bread quality. European Food Research and Technology, 2003, 216, 51-56.	1.6	311
2	Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocolloids, 2007, 21, 167-173.	5.6	289
3	Effects of polyols and nondigestible oligosaccharides on the quality of sugar-free sponge cakes. Food Chemistry, 2005, 90, 549-555.	4.2	159
4	Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 2011, 102, 272-277.	2.7	106
5	Functionality of different emulsifiers on the performance of breadmaking and wheat bread quality. European Food Research and Technology, 2004, 219, 145-150.	1.6	97
6	Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocolloids, 2015, 48, 197-207.	5.6	97
7	Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydrate Polymers, 2015, 115, 260-268.	5.1	84
8	Impact of viscous dietary fibres on the viscoelastic behaviour of gluten-free formulated rice doughs: A fundamental and empirical rheological approach. Food Hydrocolloids, 2013, 32, 252-262.	5.6	77
9	Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydrate Polymers, 2018, 201, 374-381.	5.1	70
10	Staling of fresh and frozen gluten-free bread. Journal of Cereal Science, 2011, 53, 340-346.	1.8	66
11	Influence of acidification on dough viscoelasticity of gluten-free rice starch-based dough matrices enriched with exogenous protein. LWT - Food Science and Technology, 2014, 59, 12-20.	2.5	63
12	Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocolloids, 2019, 90, 472-481.	5.6	56
13	Staling of frozen partly and fully baked breads. Study of the combined effect of amylopectin recrystallization and water content on bread firmness. Journal of Cereal Science, 2011, 53, 97-103.	1.8	54
14	Improving gluten-free bread quality by enrichment with acidic food additives. Food Chemistry, 2011, 127, 1204-1209.	4.2	54
15	Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocolloids, 2018, 79, 20-29.	5.6	46
16	Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. Journal of Food Engineering, 2018, 224, 156-164.	2.7	46
17	Characterization of cake batters by ultrasound measurements. Journal of Food Engineering, 2008, 89, 408-413.	2.7	45
18	Effect of β-glucan molecular weight on rice flour dough rheology, quality parameters of breads and inÂvitro starch digestibility. LWT - Food Science and Technology, 2017, 82, 446-453.	2.5	44

Felicidad Ronda

#	Article	IF	CITATIONS
19	Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocolloids, 2021, 113, 106480.	5.6	44
20	Fermentation time and fiber effects on recrystallization of starch components and staling of bread from frozen part-baked bread. Journal of Food Engineering, 2014, 131, 116-123.	2.7	43
21	Rheological and textural properties of tef [Eragrostis tef (Zucc.) Trotter] grain flour gels. Journal of Cereal Science, 2014, 60, 122-130.	1.8	41
22	Improvement of Quality of Gluten-free Layer Cakes. Food Science and Technology International, 2009, 15, 193-202.	1.1	38
23	Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels. Carbohydrate Research, 2008, 343, 903-911.	1.1	37
24	Effect of fermentation conditions on bread staling kinetics. European Food Research and Technology, 2008, 226, 1379-1387.	1.6	37
25	Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids, 2020, 105, 105770.	5.6	34
26	Dry-heat treatment vs. heat-moisture treatment assisted by microwave radiation: Techno-functional and rheological modifications of rice flour. LWT - Food Science and Technology, 2021, 141, 110851.	2.5	33
27	Significance of healthy viscous dietary fibres on the performance of glutenâ€free riceâ€based formulated breads. International Journal of Food Science and Technology, 2014, 49, 1375-1382.	1.3	32
28	Suitability of tef varieties in mixed wheat flour bread matrices: AÂphysico-chemical and nutritional approach. Journal of Cereal Science, 2015, 64, 139-146.	1.8	32
29	Impact of acidification and protein fortification on rheological and thermal properties of wheat, corn, potato and tapioca starch-based gluten-free bread doughs. LWT - Food Science and Technology, 2018, 96, 446-454.	2.5	29
30	Effect of Nut Paste Enrichment on Wheat Dough Rheology and Bread Volume. Food Science and Technology International, 2008, 14, 57-65.	1.1	28
31	Gelation, thermal and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos) Tj ETQq1 1 (0.784314 2.7	rgBT_/Overloc
32	Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads. Food and Bioprocess Technology, 2017, 10, 1412-1421.	2.6	24
33	Low-frequency ultrasonication modulates the impact of annealing on physicochemical and functional properties of rice flour. Food Hydrocolloids, 2021, 120, 106933.	5.6	24
34	A better control of beer properties by predicting acidity of hop iso-α-acids. Trends in Food Science and Technology, 2006, 17, 373-377.	7.8	23
35	High insoluble fibre content increases <i>in vitro</i> starch digestibility in partially baked breads. International Journal of Food Sciences and Nutrition, 2012, 63, 971-977.	1.3	22
36	Acidification of protein-enriched rice starch doughs: effects on breadmaking. European Food Research and Technology, 2015, 240, 783-794.	1.6	20

Felicidad Ronda

#	Article	IF	CITATIONS
37	Effect of tef [Eragrostis tef (Zucc.) Trotter] grain flour addition on viscoelastic properties and stickiness of wheat dough matrices and bread loaf volume. European Food Research and Technology, 2015, 241, 469-478.	1.6	20
38	Application of Autoclave Treatment for Development of a Natural Wheat Bran Antioxidant Ingredient. Foods, 2020, 9, 781.	1.9	20
39	Effect of Nut Paste Enrichment on Physical Characteristics and Consumer Acceptability of Bread. Food Science and Technology International, 2008, 14, 259-269.	1.1	19
40	Multivariate optimisation of a capillary electrophoretic method for the separation of glutenins. Application to quantitative analysis of the endosperm storage proteins in wheat. Food Chemistry, 2008, 108, 287-296.	4.2	18
41	Flowability, moisture sorption and thermal properties of tef [Eragrostis tef (Zucc.) Trotter] grain flours. Journal of Cereal Science, 2015, 63, 14-20.	1.8	17
42	Modification of structural and physicochemical properties of cowpea (Vigna unguiculata) starch by hydrothermal and ultrasound treatments. Food Hydrocolloids, 2022, 124, 107266.	5.6	17
43	Starch enzymatic hydrolysis, structural, thermal and rheological properties of pigeon pea (<i>Cajanus cajan</i>) and dolichos bean (<i>Dolichos labâ€lab</i>) legume starches. International Journal of Food Science and Technology, 2020, 55, 712-719.	1.3	14
44	Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-chemical Properties of the Treated Flour. Food and Bioprocess Technology, 2016, 9, 1562-1573.	2.6	13
45	Structuring Diluted Wheat Matrices: Impact of Heat-Moisture Treatment on Protein Aggregation and Viscoelasticity of Hydrated Composite Flours. Food and Bioprocess Technology, 2020, 13, 475-487.	2.6	12
46	Characterization of Quinoa Defatted by Supercritical Carbon Dioxide. Starch Enzymatic Susceptibility and Structural, Pasting and Thermal Properties. Food and Bioprocess Technology, 2019, 12, 1593-1602.	2.6	11
47	Development of healthy gluten-free crackers from white and brown tef (Eragrostis tef Zucc.) flours. Heliyon, 2019, 5, e02598.	1.4	11
48	Influence of milling type on tef injera quality. Food Chemistry, 2018, 266, 155-160.	4.2	10
49	Impact of yeast and fungi (1 → 3)(1 →â€~6)-β-glucan concentrates on viscoelastic behavior and bread m performance of gluten-free rice-based doughs. Food Hydrocolloids, 2018, 79, 382-390.	aking 5.6	9
50	Tef [Eragrostis tef (Zucc.) Trotter] variety determines viscoelastic and thermal properties of gluten-free dough and bread quality. LWT - Food Science and Technology, 2021, 135, 110065.	2.5	9
51	Development of a gluten-free whole grain flour by combining soaking and high hydrostatic pressure treatments for enhancing functional, nutritional and bioactive properties. Journal of Cereal Science, 2022, 105, 103458.	1.8	9
52	Prolonged frozen storage of partially-baked wheat bread increasesin vitroslowly digestible starch after final bake. International Journal of Food Sciences and Nutrition, 2010, 61, 624-629.	1.3	8
53	Techno-Functional and Gelling Properties of Acha (Fonio) (Digitaria exilis stapf) Flour: A Study of Its Potential as a New Gluten-Free Starch Source in Industrial Applications. Foods, 2022, 11, 183.	1.9	7
54	Impact of the Variety of Tef [Eragrostis tef (Zucc.) Trotter] on Physical, Sensorial and Nutritional Properties of Gluten-Free Breads. Foods, 2022, 11, 1017.	1.9	3

#	Article	IF	CITATIONS
55	Aspects of 2-acetyl-1,3-cyclopentanedione as a chromium(iii) chelating agent: nutritional implications. International Journal of Food Science and Technology, 2003, 38, 63-71.	1.3	2
56	CORRELATION OF COMPLEXATION RATE CONSTANTS OF 1:1 IRON CHELATES WITH LIGAND DISSOCIATION CONSTANTS. FOOD CONSIDERATIONS. Journal of Food Biochemistry, 2003, 27, 321-332.	1.2	2
57	2-Acetyl-1,3-cyclopentanedione–oxovanadium(IV) complexes. Acidity and implications for gastrointestinal absorption. Food and Chemical Toxicology, 2007, 45, 322-327.	1.8	1