Isei Tanida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12008837/publications.pdf

Version: 2024-02-01

110170 70961 27,117 65 41 64 citations h-index g-index papers 66 66 66 35577 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren's syndrome-like exocrinopathy. Cellular and Molecular Life Sciences, 2022, 79, 307.	2.4	4
2	Lack of Cathepsin D in the central nervous system results in microglia and astrocyte activation and the accumulation of proteinopathy-related proteins. Scientific Reports, 2022, 12 , .	1.6	3
3	Membranous Structures Directly Come in Contact With p62/SQSTM1 Bodies. Journal of Histochemistry and Cytochemistry, 2021, 69, 407-414.	1.3	4
4	Autophagy Deficiency in Renal Proximal Tubular Cells Leads to an Increase in Cellular Injury and Apoptosis under Normal Fed Conditions. International Journal of Molecular Sciences, 2020, 21, 155.	1.8	23
5	Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Scientific Reports, 2020, 10, 9643.	1.6	9
6	Streptococcus pneumoniae triggers hierarchical autophagy through reprogramming of LAPosome-like vesicles via NDP52-delocalization. Communications Biology, 2020, 3, 25.	2.0	17
7	Establishment of a system for screening autophagic flux regulators using a modified fluorescent reporter and CRISPR/Cas9. Biochemical and Biophysical Research Communications, 2019, 516, 686-692.	1.0	8
8	Lack of Cathepsin D in the Renal Proximal Tubular Cells Resulted in Increased Sensitivity against Renal Ischemia/Reperfusion Injury. International Journal of Molecular Sciences, 2019, 20, 1711.	1.8	15
9	Blocking LC3 lipidation and ATG12 conjugation reactions by ATG7 mutant protein containing C572S. Biochemical and Biophysical Research Communications, 2019, 508, 521-526.	1.0	13
10	Molecular mechanisms of <i>Streptococcus pneumoniae</i> â€targeted autophagy via pneumolysin, Golgiâ€resident Rab41, and Nedd4â€1â€mediated K63â€linked ubiquitination. Cellular Microbiology, 2018, 20, e12846.	1.1	39
11	<i>Atg9a</i> deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy, 2018, 14, 764-777.	4.3	82
12			
12	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
13	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222. Macroautophagy is essential for killing of intracellular <i>Burkholderia pseudomallei</i> hi>in human neutrophils. Autophagy, 2015, 11, 748-755.	4.3	4,701 27
	Autophagy, 2016, 12, 1-222. Macroautophagy is essential for killing of intracellular <i>Burkholderia pseudomallei</i> in human		
13	Autophagy, 2016, 12, 1-222. Macroautophagy is essential for killing of intracellular i> Burkholderia pseudomallei in human neutrophils. Autophagy, 2015, 11, 748-755. Phospholipase C-Related Catalytically Inactive Protein Participates in the Autophagic Elimination of	4.3	27
13 14	Autophagy, 2016, 12, 1-222. Macroautophagy is essential for killing of intracellular in Burkholderia pseudomallei in human neutrophils. Autophagy, 2015, 11, 748-755. Phospholipase C-Related Catalytically Inactive Protein Participates in the Autophagic Elimination of Staphylococcus aureus Infecting Mouse Embryonic Fibroblasts. PLoS ONE, 2014, 9, e98285. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin	4.3	27
13 14 15	Autophagy, 2016, 12, 1-222. Macroautophagy is essential for killing of intracellular (i) Burkholderia pseudomallei (i) in human neutrophils. Autophagy, 2015, 11, 748-755. Phospholipase C-Related Catalytically Inactive Protein Participates in the Autophagic Elimination of Staphylococcus aureus Infecting Mouse Embryonic Fibroblasts. PLoS ONE, 2014, 9, e98285. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biology Open, 2014, 3, 463-474. In Vitro Assays of Lipidation of Mammalian Atg8 Homologs. Current Protocols in Cell Biology, 2014,	4.3 1.1 0.6	27 7 19

#	Article	IF	CITATIONS
19	Doxorubicin-induced glomerulosclerosis with proteinuria in GFP-GABARAP transgenic mice. American Journal of Physiology - Renal Physiology, 2012, 302, F380-F389.	1.3	13
20	The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation. Autophagy, 2012, 8, 88-97.	4.3	47
21	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
22	Autophagosome Formation and Molecular Mechanism of Autophagy. Antioxidants and Redox Signaling, 2011, 14, 2201-2214.	2.5	401
23	Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochemical and Biophysical Research Communications, 2011, 412, 618-625.	1.0	109
24	Autophagy basics. Microbiology and Immunology, 2011, 55, 1-11.	0.7	206
25	Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy, 2011, 7, 727-736.	4.3	233
26	Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy, 2011, 7, 176-187.	4.3	385
27	Measurement of Autophagy in Cells and Tissues. Methods in Molecular Biology, 2010, 648, 193-214.	0.4	130
28	Autophagic Compartments Gain Access to the MHC Class II Compartments in Thymic Epithelium. Journal of Immunology, 2009, 183, 7278-7285.	0.4	75
29	Knockdown of autophagy-related gene decreases the production of infectious Hepatitis C virus particles. Autophagy, 2009, 5, 937-945.	4.3	159
30	Characterization of CAA0225, a Novel Inhibitor Specific for Cathepsin L, as a Probe for Autophagic Proteolysis. Biological and Pharmaceutical Bulletin, 2009, 32, 475-479.	0.6	30
31	LC3 and Autophagy. Methods in Molecular Biology, 2008, 445, 77-88.	0.4	1,311
32	Synthetic fibril peptide promotes clearance of scrapie prion protein by lysosomal degradation. Microbiology and Immunology, 2008, 52, 357-365.	0.7	7
33	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
34	Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls. Autophagy, 2008, 4, 131-134.	4.3	94
35	Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy, 2008, 4, 692-700.	4.3	80
36	Phosholipase C-Related Inactive Protein Is Involved in Trafficking of Â2 Subunit-Containing GABAA Receptors to the Cell Surface. Journal of Neuroscience, 2007, 27, 1692-1701.	1.7	78

#	Article	IF	CITATIONS
37	The Crystal Structure of Human Atg4b, a Processing and De-conjugating Enzyme for Autophagosome-forming Modifiers. Journal of Molecular Biology, 2006, 355, 612-618.	2.0	79
38	Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS Journal, 2006, 273, 2553-2562.	2.2	54
39	Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441, 880-884.	13.7	3,209
40	Lysosomal Turnover of GABARAP-Phospholipid Conjugate is Activated During Differentiation of C2C12 Cells to Myotubes without Inactivation of the mTor Kinase-Signaling Pathway. Autophagy, 2006, 2, 264-271.	4.3	28
41	Calpain is required for macroautophagy in mammalian cells. Journal of Cell Biology, 2006, 175, 595-605.	2.3	159
42	Phosphatidylserine in Addition to Phosphatidylethanolamine Is an in Vitro Target of the Mammalian Atg8 Modifiers, LC3, GABARAP, and GATE-16. Journal of Biological Chemistry, 2006, 281, 3017-3024.	1.6	178
43	Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals. Journal of Biological Chemistry, 2006, 281, 4035-4041.	1.6	206
44	Solution Structure of Microtubule-associated Protein Light Chain 3 and Identification of Its Functional Subdomains. Journal of Biological Chemistry, 2005, 280, 24610-24617.	1.6	93
45	Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	2.3	2,180
46	Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy. Autophagy, 2005, 1, 84-91.	4.3	1,022
47	Participation of Autophagy in Storage of Lysosomes in Neurons from Mouse Models of Neuronal Ceroid-Lipofuscinoses (Batten Disease). American Journal of Pathology, 2005, 167, 1713-1728.	1.9	305
48	HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates. Journal of Biological Chemistry, 2004, 279, 36268-36276.	1.6	297
49	Human Light Chain 3/MAP1LC3B Is Cleaved at Its Carboxyl-terminal Met121 to Expose Gly120 for Lipidation and Targeting to Autophagosomal Membranes. Journal of Biological Chemistry, 2004, 279, 47704-47710.	1.6	213
50	Role for Rab7 in maturation of late autophagic vacuoles. Journal of Cell Science, 2004, 117, 4837-4848.	1.2	781
51	A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO Journal, 2004, 23, 1977-1986.	3.5	300
52	Letter to the Editor:1H,13C, and15N Resonance Assignments of Human Microtubule-associated Protein Light Chain-3. Journal of Biomolecular NMR, 2004, 29, 415-416.	1.6	2
53	LC3 conjugation system in mammalian autophagy. International Journal of Biochemistry and Cell Biology, 2004, 36, 2503-2518.	1.2	1,223
54	GATE-16 interacting protein. Juntendoì,, Igaku, 2004, 49, 475-486.	0.1	0

#	Article	IF	Citations
55	The carboxyl terminal 17 amino acids within Apg7 are essential for Apg8 lipidation, but not for Apg12 conjugation. FEBS Letters, 2003, 551, 71-77.	1.3	14
56	GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochemical and Biophysical Research Communications, 2003, 300, 637-644.	1.0	96
57	MAPâ€LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB Journal, 2003, 17, 1165-1167.	0.2	180
58	The Mouse APG10 Homologue, an E2-like Enzyme for Apg12p Conjugation, Facilitates MAP-LC3 Modification. Journal of Biological Chemistry, 2003, 278, 39517-39526.	1.6	70
59	Human Apg3p/Aut1p Homologue Is an Authentic E2 Enzyme for Multiple Substrates, GATE-16, GABARAP, and MAP-LC3, and Facilitates the Conjugation of hApg12p to hApg5p. Journal of Biological Chemistry, 2002, 277, 13739-13744.	1.6	237
60	Murine Apg12p Has a Substrate Preference for Murine Apg7p over Three Apg8p Homologs. Biochemical and Biophysical Research Communications, 2002, 292, 256-262.	1.0	30
61	Mammalian Apg12p, but not the Apg12pÂ-Apg5p conjugate, facilitates LC3 processing. Biochemical and Biophysical Research Communications, 2002, 296, 1164-1170.	1.0	37
62	The C-terminal Region of an Apg7p/Cvt2p Is Required for Homodimerization and Is Essential for Its E1 Activity and E1-E2 Complex Formation. Journal of Biological Chemistry, 2001, 276, 9846-9854.	1.6	84
63	The Human Homolog of Saccharomyces cerevisiae Apg7p Is a Protein-activating Enzyme for Multiple Substrates Including Human Apg12p, GATE-16, GABARAP, and MAP-LC3. Journal of Biological Chemistry, 2001, 276, 1701-1706.	1.6	294
64	A ubiquitin-like system mediates protein lipidation. Nature, 2000, 408, 488-492.	13.7	1,790
65	Apg7p/Cvt2p: A Novel Protein-activating Enzyme Essential for Autophagy. Molecular Biology of the Cell, 1999, 10, 1367-1379.	0.9	363