Jana Žel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12008690/publications.pdf

Version: 2024-02-01

147801 182427 2,803 64 31 51 h-index citations g-index papers 64 64 64 2582 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Digital PCR as an effective tool for GMO quantification in complex matrices. Food Chemistry, 2019, 294, 73-78.	8.2	59
2	Multiplex Droplet Digital PCR Protocols for Quantification of GM Maize Events. Methods in Molecular Biology, 2018, 1768, 69-98.	0.9	17
3	Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR. Analytical and Bioanalytical Chemistry, 2018, 410, 211-221.	3.7	11
4	Decision Support for the Comparative Evaluation and Selection of Analytical Methods: Detection of Genetically Modified Organisms as an Example. Food Analytical Methods, 2018, 11, 2105-2122.	2.6	2
5	Inter-laboratory assessment of different digital PCR platforms for quantification of human cytomegalovirus DNA. Analytical and Bioanalytical Chemistry, 2017, 409, 2601-2614.	3.7	29
6	ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis. Scientific Reports, 2017, 7, 14155.	3.3	16
7	Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Scientific Reports, 2017, 7, 8601.	3.3	40
8	Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Analytical and Bioanalytical Chemistry, 2017, 409, 6689-6697.	3.7	65
9	Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods, 2016, 12, 29.	4.3	10
10	DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 2016, 408, 4575-4593.	3.7	29
11	Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Analytical and Bioanalytical Chemistry, 2016, 408, 4595-4614.	3.7	43
12	The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infectious Diseases, 2016, 16, 366.	2.9	41
13	Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Scientific Reports, 2016, 6, 35451.	3.3	105
14	Digital PCR for direct quantification of viruses without DNA extraction. Analytical and Bioanalytical Chemistry, 2016, 408, 67-75.	3.7	41
15	Detection of Rare Drug Resistance Mutations by Digital PCR in a Human Influenza A Virus Model System and Clinical Samples. Journal of Clinical Microbiology, 2016, 54, 392-400.	3.9	52
16	Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Analytical and Bioanalytical Chemistry, 2016, 408, 107-121.	3.7	68
17	Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. Pesticide Biochemistry and Physiology, 2015, 122, 59-66.	3.6	32
18	Multiplex Quantification of 12 European Union Authorized Genetically Modified Maize Lines with Droplet Digital Polymerase Chain Reaction. Analytical Chemistry, 2015, 87, 8218-8226.	6.5	100

#	Article	IF	CITATIONS
19	Standardization of Nucleic Acid Tests for Clinical Measurements of Bacteria and Viruses. Journal of Clinical Microbiology, 2015, 53, 2008-2014.	3.9	36
20	Nucleic-acid analysis in new fields of metrology. , 2015, , .		1
21	Involvement of Potato (Solanum tuberosum L.) MKK6 in Response to Potato virus Y. PLoS ONE, 2014, 9, e104553.	2.5	18
22	GMO matrix: A cost-effective approach for screening unauthorized genetically modified events in India. Food Control, 2014, 38, 124-129.	5.5	29
23	GMO quantification: valuable experience and insights for the future. Analytical and Bioanalytical Chemistry, 2014, 406, 6485-6497.	3.7	54
24	Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Analytical and Bioanalytical Chemistry, 2014, 406, 6513-6528.	3.7	136
25	GMOseek: a user friendly tool for optimized GMO testing. BMC Bioinformatics, 2014, 15, 258.	2.6	18
26	Development and Validation of Duplex, Triplex, and Pentaplex Real-Time PCR Screening Assays for the Detection of Genetically Modified Organisms in Food and Feed. Journal of Agricultural and Food Chemistry, 2013, 61, 10293-10301.	5.2	58
27	\hat{l}^2 -1,3-glucanase class III promotes spread of PVYNTN and improves in planta protein production. Plant Biotechnology Reports, 2013, 7, 547-555.	1.5	35
28	The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants. BMC Bioinformatics, 2013, 14, 256.	2.6	39
29	Quantitative Analysis of Food and Feed Samples with Droplet Digital PCR. PLoS ONE, 2013, 8, e62583.	2.5	238
30	Inhibition of the Growth of Colorado Potato Beetle Larvae by Macrocypins, Protease Inhibitors from the Parasol Mushroom. Journal of Agricultural and Food Chemistry, 2013, 61, 12499-12509.	5.2	26
31	Loop-Mediated Isothermal Amplification: Rapid Visual and Real-Time Methods for Detection of Genetically Modified Crops. Journal of Agricultural and Food Chemistry, 2013, 61, 11338-11346.	5.2	65
32	How to Reliably Test for GMOs., 2012, , 1-95.		6
33	How to Reliably Test for GMOs. , 2012, , .		24
34	Knowledge-technology-based discovery of unauthorized genetically modified organisms. Analytical and Bioanalytical Chemistry, 2010, 396, 1951-1959.	3.7	16
35	New approaches in GMO detection. Analytical and Bioanalytical Chemistry, 2010, 396, 1991-2002.	3.7	104
36	Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Analytical and Bioanalytical Chemistry, 2010, 396, 2023-2029.	3.7	125

#	Article	IF	Citations
37	GMOtrack: Generator of Cost-Effective GMO Testing Strategies. Journal of AOAC INTERNATIONAL, 2009, 92, 1739-1746.	1.5	27
38	PVY ^{NTN} elicits a diverse gene expression response in different potato genotypes in the first 12Åh after inoculation. Molecular Plant Pathology, 2009, 10, 263-275.	4.2	97
39	Detection of genetically modified organisms—closing the gaps. Nature Biotechnology, 2009, 27, 700-701.	17.5	43
40	GMOtrack: generator of cost-effective GMO testing strategies. Journal of AOAC INTERNATIONAL, 2009, 92, 1739-46.	1.5	7
41	Alternative DNA amplification methods to PCR and their application in GMO detection: a review. European Food Research and Technology, 2008, 227, 1287-1297.	3.3	57
42	Method Validation and Quality Management in the Flexible Scope of Accreditation: An Example of Laboratories Testing for Genetically Modified Organisms. Food Analytical Methods, 2008, 1, 61-72.	2.6	50
43	Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnology, 2008, 8, 26.	3.3	55
44	Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize. Analytical Biochemistry, 2008, 376, 189-199.	2.4	44
45	NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs. Nucleic Acids Research, 2008, 36, e118-e118.	14.5	78
46	Critical points of DNA quantification by real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnology, 2006, 6, 37.	3.3	183
47	Accreditation of GMO detection laboratories: Improving the reliability of GMO detection. Accreditation and Quality Assurance, 2006, 10, 531-536.	0.8	15
48	Yew (Taxus x media Rehd.) cell suspension cultures as a source of taxanes. Acta Physiologiae Plantarum, 2006, 28, 3-8.	2.1	3
49	Detection of processed genetically modified food using CIM monolithic columns for DNA isolation. Journal of Chromatography A, 2005, 1065, 107-113.	3.7	19

#	Article	IF	CITATIONS
55	Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Scientia Horticulturae, 1998, 73, 193-202.	3.6	25
56	The effect of jasmonic acid, sucrose and darkness on garlic (Allium sativum L. cv. Ptujski jesenski) bulb formation in vitro. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 231-235.	2.1	17
57	Jasmonic acid promotes division of fern protoplasts, elongation of rhizoids and early development of gametophytes. Physiologia Plantarum, 1996, 97, 659-664.	5 . 2	24
58	The effect of aluminum on cytokinins in the mycelia of Amanita muscaria. Journal of Plant Growth Regulation, 1995, 14, 117-120.	5.1	14
59	The effect of aluminium on the cytokinins in the mycelia of Lactarius piperatus. Plant Science, 1994, 97, 137-142.	3.6	10
60	Jasmonic acid stimulates shoot and bulb formation of garlic in vitro. Journal of Plant Growth Regulation, 1993, 12, 73-77.	5.1	70
61	Influence of aluminum on the membranes of mycorrhizal fungi. Water, Air, and Soil Pollution, 1993, 71, 101-109.	2.4	14
62	Effects of aluminum on mineral content of mycorrhizal fungi in vitro. Water, Air, and Soil Pollution, 1993, 71, 271-279.	2.4	12
63	Effects of aluminum on membrane fluidity of the mycorrhizal fungus Amanita muscaria. Physiologia Plantarum, 1993, 89, 172-176.	5.2	30
64	In vitro aluminum effects on ectomycorrizal fungi. Water, Air, and Soil Pollution, 1992, 63, 145-153.	2.4	8