
George T Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12008611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2022, 7, 827-833.	8.8	25
2	Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nature Energy, 2022, 7, 340-351.	19.8	164
3	Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376, 73-77.	6.0	366
4	Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF <i>_x </i> . Science, 2022, 377, 302-306.	6.0	141
5	Scaling-up perovskite solar cells on hydrophobic surfaces. Nano Energy, 2021, 81, 105633.	8.2	46
6	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 2021, 20, 378-384.	13.3	257
7	Potassium Thiocyanateâ€Assisted Enhancement of Slotâ€Dieâ€Coated Perovskite Films for Highâ€Performance Solar Cells. Small Science, 2021, 1, 2000044.	5.8	26
8	Potassium Thiocyanateâ€Assisted Enhancement of Slotâ€Dieâ€Coated Perovskite Films for Highâ€Performance Solar Cells. Small Science, 2021, 1, 2170013.	5.8	9
9	Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDTâ€Based Nonâ€Fullerene Acceptors with PCE10 as Donor Polymer. Advanced Energy Materials, 2021, 11, 2100839.	10.2	23
10	Carboxylate Adsorption on Rutile TiO ₂ (100): Role of Coulomb Repulsion, Relaxation, and Steric Hindrance. Journal of Physical Chemistry C, 2021, 125, 13770-13779.	1.5	8
11	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	11.7	119
12	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. ACS Energy Letters, 2021, 6, 2944-2951.	8.8	42
13	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101662.	10.2	77
14	Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy and Environmental Science, 2021, 14, 4377-4390.	15.6	79
15	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102363.	10.2	38
16	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, 2170160.	10.2	2
17	Charge Carrier Recombination at Perovskite/Hole Transport Layer Interfaces Monitored by Time-Resolved Spectroscopy. ACS Energy Letters, 2021, 6, 4155-4164.	8.8	20
18	28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 3169-3186.	11.7	99

#	Article	IF	CITATIONS
19	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells (Adv. Energy Mater.) Tj ETQq1 1 0.78	4314.rgBT 10.2	/Qverlock 10
20	Lewis-Acid Doping of Triphenylamine-Based Hole Transport Materials Improves the Performance and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 23874-23884.	4.0	38
21	Defect Passivation in Perovskite Solar Cells by Cyanoâ€Based Ï€â€Conjugated Molecules for Improved Performance and Stability. Advanced Functional Materials, 2020, 30, 2002861.	7.8	87
22	Triarylphosphine Oxide as Cathode Interfacial Material for Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900434.	1.9	16
23	Bridging Hydroxyls on Anatase TiO ₂ (101) by Water Dissociation in Oxygen Vacancies. Journal of Physical Chemistry B, 2018, 122, 834-839.	1.2	47