
Matthew McKenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1200842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Respiratory Chain Supercomplexes Are Destabilized in Barth Syndrome Patients. Journal of Molecular Biology, 2006, 361, 462-469.	2.0	373
2	Understanding mitochondrial complex I assembly in health and disease. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 851-862.	0.5	351
3	Analysis of the Assembly Profiles for Mitochondrial- and Nuclear-DNA-Encoded Subunits into Complex I. Molecular and Cellular Biology, 2007, 27, 4228-4237.	1.1	242
4	Mutation of the Mitochondrial Tyrosyl-tRNA Synthetase Gene, YARS2, Causes Myopathy, Lactic Acidosis, and Sideroblastic Anemia—MLASA Syndrome. American Journal of Human Genetics, 2010, 87, 52-59.	2.6	211
5	Mitochondrial Cardiolipin Involved in Outer-Membrane Protein Biogenesis: Implications for Barth Syndrome. Current Biology, 2009, 19, 2133-2139.	1.8	204
6	Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO Journal, 2007, 26, 3227-3237.	3.5	184
7	Assembly of mitochondrial complex I and defects in disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 78-88.	1.9	180
8	Mutation of C20orf7 Disrupts Complex I Assembly and Causes Lethal Neonatal Mitochondrial Disease. American Journal of Human Genetics, 2008, 83, 468-478.	2.6	175
9	Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Research, 2012, 40, 10124-10138.	6.5	154
10	The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathologica Communications, 2014, 2, 1.	2.4	143
11	Mutations in MTFMT Underlie a Human Disorder of Formylation Causing Impaired Mitochondrial Translation. Cell Metabolism, 2011, 14, 428-434.	7.2	141
12	Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life, 2010, 62, 497-502.	1.5	120
13	Functional Respiratory Chain Analyses in Murid Xenomitochondrial Cybrids Expose Coevolutionary Constraints of Cytochrome b and Nuclear Subunits of Complex III. Molecular Biology and Evolution, 2003, 20, 1117-1124.	3.5	118
14	The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death and Differentiation, 2013, 20, 1644-1653.	5.0	110
15	Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Analytical Biochemistry, 2007, 364, 128-137.	1.1	103
16	Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Bioscience Reports, 2016, 36, .	1.1	89
17	Mitochondrial Disease: Mutations and Mechanisms. Neurochemical Research, 2004, 29, 589-600.	1.6	87
18	Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution. Trends in Ecology and Evolution, 2021, 36, 321-332.	4.2	87

MATTHEW MCKENZIE

#	Article	IF	CITATIONS
19	Expression of Rattus norvegicus mtDNA inMus musculus Cells Results in Multiple Respiratory Chain Defects. Journal of Biological Chemistry, 2000, 275, 31514-31519.	1.6	85
20	Assembly of nuclear DNAâ€encoded subunits into mitochondrial complex IV, and their preferential integration into supercomplex forms in patient mitochondria. FEBS Journal, 2009, 276, 6701-6713.	2.2	79
21	Production of homoplasmic xenomitochondrial mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1685-1690.	3.3	73
22	Mitochondrial DNA Haplotypes Define Gene Expression Patterns in Pluripotent and Differentiating Embryonic Stem Cells. Stem Cells, 2013, 31, 703-716.	1.4	65
23	Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Scientific Reports, 2016, 6, 23229.	1.6	65
24	Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. ELife, 2016, 5, .	2.8	65
25	A Founder Mutation in PET100 Causes Isolated Complex IV Deficiency in Lebanese Individuals with Leigh Syndrome. American Journal of Human Genetics, 2014, 94, 209-222.	2.6	60
26	Mitochondrial ND5 Gene Variation Associated with Encephalomyopathy and Mitochondrial ATP Consumption. Journal of Biological Chemistry, 2007, 282, 36845-36852.	1.6	59
27	Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Human Molecular Genetics, 2015, 24, 2952-2965.	1.4	59
28	Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Methods in Molecular Biology, 2019, 1928, 69-76.	0.4	59
29	Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene. Journal of Biological Chemistry, 2012, 287, 20652-20663.	1.6	58
30	The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection. Molecular Biotechnology, 2003, 23, 73-82.	1.3	57
31	Mitochondrial Fatty Acid Oxidation Disorders Associated with Short-Chain Enoyl-CoA Hydratase (ECHS1) Deficiency. Cells, 2018, 7, 46.	1.8	54
32	Mutations in the Gene Encoding C8orf38 Block Complex I Assembly by Inhibiting Production of the Mitochondria-Encoded Subunit ND1. Journal of Molecular Biology, 2011, 414, 413-426.	2.0	52
33	Next-generation sequencing in molecular diagnosis: <i>NUBPL</i> mutations highlight the challenges of variant detection and interpretation. Human Mutation, 2012, 33, 411-418.	1.1	49
34	Loss of mitochondrial DNAâ€encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB Journal, 2016, 30, 2236-2248.	0.2	49
35	Monocytes and dendritic cells are the primary sources of interleukin 37 in human immune cells. Journal of Leukocyte Biology, 2017, 101, 901-911.	1.5	49
36	The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Reviews and Reports, 2013, 9, 1-15.	5.6	48

#	Article	IF	CITATIONS
37	Loss of the Mitochondrial Fatty Acid β-Oxidation Protein Medium-Chain Acyl-Coenzyme A Dehydrogenase Disrupts Oxidative Phosphorylation Protein Complex Stability and Function. Scientific Reports, 2018, 8, 153.	1.6	47
38	Chapter 18 Analysis of Respiratory Chain Complex Assembly with Radiolabeled Nuclear―and Mitochondrialâ€Encoded Subunits. Methods in Enzymology, 2009, 456, 321-339.	0.4	43
39	Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discovery, 2017, 3, 17062.	2.0	33
40	Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids. PLoS ONE, 2016, 11, e0154371.	1.1	28
41	Anti-cancer analogues ME-143 and ME-344 exert toxicity by directly inhibiting mitochondrial NADH: ubiquinone oxidoreductase (Complex I). American Journal of Cancer Research, 2015, 5, 689-701.	1.4	23
42	Development and Initial Characterization of Xenomitochondrial Mice. Journal of Bioenergetics and Biomembranes, 2004, 36, 421-427.	1.0	22
43	Mutation detection using fluorescent enzyme mismatch cleavage with T4 endonuclease VII. Electrophoresis, 1999, 20, 1162-1170.	1.3	21
44	Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Letters, 2020, 594, 590-610.	1.3	21
45	Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy – Creatine prophylaxis and the need for multi-organ protection. Neurochemistry International, 2016, 95, 15-23.	1.9	20
46	Simultaneous Measurement of Mitochondrial Calcium and Mitochondrial Membrane Potential in Live Cells by Fluorescent Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	16
47	AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS ONE, 2016, 11, e0148213.	1.1	15
48	Prenatal acoustic programming of mitochondrial function for high temperatures in an arid-adapted bird. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211893.	1.2	14
49	Capture of Somatic mtDNA Point Mutations with Severe Effects on Oxidative Phosphorylation in Synaptosome Cybrid Clones from Human Brain. Human Mutation, 2014, 35, 1476-1484.	1.1	12
50	MicroRNA-101-3p Modulates Mitochondrial Metabolism via the Regulation of Complex II Assembly. Journal of Molecular Biology, 2022, 434, 167361.	2.0	9
51	Deletion of the Complex I Subunit NDUFS4 Adversely Modulates Cellular Differentiation. Stem Cells and Development, 2016, 25, 239-250.	1.1	8
52	Modulation of ceramide-induced cell death and superoxide production by mitochondrial DNA-encoded respiratory chain defects in Rattus xenocybrid mouse cells. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 817-825.	0.5	7
53	Assessment of the web-based audience response system socrative for biomedical science revision classes. International Journal of Educational Research Open, 2020, 1, 100008.	1.0	7
54	Pioglitazone and Deoxyribonucleoside Combination Treatment Increases Mitochondrial Respiratory Capacity in m.3243A>G MELAS Cybrid Cells. International Journal of Molecular Sciences, 2020, 21, 2139.	1.8	7

MATTHEW MCKENZIE

#	Article	IF	CITATIONS
55	The Effects of In Utero Fetal Hypoxia and Creatine Treatment on Mitochondrial Function in the Late Gestation Fetal Sheep Brain. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	1.9	6
56	Mitochondrial dysfunction in a novel form of autosomal recessive ataxia. Mitochondrion, 2013, 13, 235-245.	1.6	4
57	Analysis of Mitochondrial DNA in Induced Pluripotent and Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1330, 219-252.	0.4	3
58	Mitochondrial DNA Mutations and Their Effects on Complex I Biogenesis: Implications for Metabolic Disease. , 2013, , 25-47.		3
59	The Use of Resolvases T4 Endonuclease VII and T7 Endonuclease I in Mutation Detection. , 2000, 152, 187-199.		2
60	Mitochondrial research in Australia: A major player in worldwide trends. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1225-1226.	1.1	0
61	Generation of Xenomitochondrial Embryonic Stem Cells for the Production of Live Xenomitochondrial Mice. Methods in Molecular Biology, 2016, 1351, 163-173.	0.4	Ο
62	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. PLoS ONE, 2020, 15, e0239804.	1.1	0
63	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		Ο
64	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		0
65	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		Ο
66	Nuclear response to divergent mitochondrial DNA genotypes modulates the interferon immune response. , 2020, 15, e0239804.		0