
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12007792/publications.pdf Version: 2024-02-01

Χινητία Ζηλν

#	Article	IF	CITATIONS
1	Progression of cerebral white matter hyperintensities is related to leucocyte gene expression. Brain, 2022, 145, 3179-3186.	3.7	1
2	Gene Expression Changes Implicate Specific Peripheral Immune Responses to Deep and Lobar Intracerebral Hemorrhages in Humans. Brain Hemorrhages, 2022, , .	0.4	1
3	Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Translational Stroke Research, 2021, 12, 754-777.	2.3	24
4	Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1398-1416.	2.4	27
5	The Wnt Effector TCF7l2 Promotes Oligodendroglial Differentiation by Repressing Autocrine BMP4-Mediated Signaling. Journal of Neuroscience, 2021, 41, 1650-1664.	1.7	17
6	Bacterial lipopolysaccharide is associated with stroke. Scientific Reports, 2021, 11, 6570.	1.6	24
7	PARP1-mediated PARylation activity is essential for oligodendroglial differentiation and CNS myelination. Cell Reports, 2021, 37, 109695.	2.9	23
8	Lipopolysaccharide, Identified Using an Antibody and by PAS Staining, Is Associated With Corpora amylacea and White Matter Injury in Alzheimer's Disease and Aging Brain. Frontiers in Aging Neuroscience, 2021, 13, 705594.	1.7	9
9	MicroRNA and their target mRNAs change expression in whole blood of patients after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 775-786.	2.4	38
10	Alternative Splicing of Putative Stroke/Vascular Risk Factor Genes Expressed in Blood Following Ischemic Stroke Is Sexually Dimorphic and Cause-Specific. Frontiers in Neurology, 2020, 11, 584695.	1.1	8
11	Genetic variation contributes to gene expression response in ischemic stroke: an eQTL study. Annals of Clinical and Translational Neurology, 2020, 7, 1648-1660.	1.7	11
12	Abstract 69: Trans-eQTL Analysis of Blood After Ischemic Stroke Reveals X-Linked SNP-Gene Relationships. Stroke, 2020, 51, .	1.0	1
13	Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. Journal of Neuroinflammation, 2019, 16, 56.	3.1	51
14	HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Translational Stroke Research, 2019, 10, 19-25.	2.3	23
15	The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1818-1835.	2.4	45
16	Cleaved β-Actin May Contribute to DNA Fragmentation Following Very Brief Focal Cerebral Ischemia. Journal of Neuropathology and Experimental Neurology, 2018, 77, 260-265.	0.9	2
17	Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Frontiers in Aging Neuroscience, 2018, 10, 42.	1.7	249
18	Inhibition of Src family kinases improves cognitive function after intraventricular hemorrhage or intraventricular thrombin. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2359-2367.	2.4	25

#	Article	IF	CITATIONS
19	Abstract TP81: MiR122 Modulates Nos2 to Improve Stroke Outcomes After Middle Cerebral Artery Occlusion in Rats. Stroke, 2017, 48, .	1.0	0
20	Altered Expression of Long Noncoding RNAs in Blood After Ischemic Stroke and Proximity to Putative Stroke Risk Loci. Stroke, 2016, 47, 2896-2903.	1.0	131
21	Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 2016, 87, 2198-2205.	1.5	40
22	Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87, 2324-2332.	1.5	374
23	Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1374-1383.	2.4	73
24	Myelin Basic Protein Associates with AβPP, Aβ1-42, and Amyloid Plaques in Cortex of Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2015, 44, 1213-1229.	1.2	67
25	Inflammation Combined with Ischemia Produces Myelin Injury and Plaque-Like Aggregates of Myelin, Amyloid-β and AβPP in Adult Rat Brain. Journal of Alzheimer's Disease, 2015, 46, 507-523.	1.2	36
26	MicroRNA and mRNA Expression Changes in Steroid NaÃ ⁻ ve and Steroid Treated DMD Patients. Journal of Neuromuscular Diseases, 2015, 2, 387-396.	1.1	10
27	Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study. Translational Stroke Research, 2015, 6, 284-289.	2.3	49
28	Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 888-901.	2.4	405
29	Abstract W P93: MiR-122 Improves Stroke Outcomes after Middle Cerebral Artery Occlusion in Rats. Stroke, 2015, 46, .	1.0	1
30	microRNA Expression in Peripheral Blood Cells following Acute Ischemic Stroke and Their Predicted Gene Targets. PLoS ONE, 2014, 9, e99283.	1.1	165
31	Gene Expression in Peripheral Immune Cells following Cardioembolic Stroke Is Sexually Dimorphic. PLoS ONE, 2014, 9, e102550.	1.1	84
32	Distinctive RNA Expression Profiles in Blood Associated With Alzheimer Disease After Accounting for White Matter Hyperintensities. Alzheimer Disease and Associated Disorders, 2014, 28, 226-233.	0.6	43
33	Inhibition of Src Family Kinases Protects Hippocampal Neurons and Improves Cognitive Function after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1268-1276.	1.7	28
34	Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 185-199.	2.4	423
35	Myelin Injury and Degraded Myelin Vesicles in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 232-238.	0.7	60
36	Abstract T P234: Cell Cycle Inhibition via Blocking Src Family Kinases Promotes Hippocampal Neuron Survival and Improves Cognitive Function after Intraventricular Hemorrhage. Stroke, 2014, 45, .	1.0	0

#	Article	IF	CITATIONS
37	Heat Shock Proteins in the Brain: Role of Hsp70, Hsp 27, and HO-1 (Hsp32) and Their Therapeutic Potential. Translational Stroke Research, 2013, 4, 685-692.	2.3	112
38	RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke. Annals of Neurology, 2013, 74, 232-240.	2.8	47
39	Effects of Gender on Gene Expression in the Blood of Ischemic Stroke Patients. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 780-791.	2.4	64
40	Ischemic Transient Neurological Events Identified by Immune Response to Cerebral Ischemia. Stroke, 2012, 43, 1006-1012.	1.0	38
41	The X-Chromosome Has a Different Pattern of Gene Expression in Women Compared With Men With Ischemic Stroke. Stroke, 2012, 43, 326-334.	1.0	48
42	Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome. Psychiatry Research, 2012, 200, 593-601.	1.7	29
43	Prediction of Cardioembolic, Arterial, and Lacunar Causes of Cryptogenic Stroke by Gene Expression and Infarct Location. Stroke, 2012, 43, 2036-2041.	1.0	77
44	Y Chromosome Gene Expression in the Blood of Male Patients With Ischemic Stroke Compared With Male Controls. Gender Medicine, 2012, 9, 68-75.e3.	1.4	25
45	Abstract 2357: Src Kinase Inhibition Blocks Thrombin-induced Brain Injuries without Cognitive Side Effects. Stroke, 2012, 43, .	1.0	Ο
46	Post stroke intervention: Is the window widening?. Neuropharmacology, 2011, 60, 1000-1002.	2.0	2
47	Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1513-1531.	2.4	71
48	GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: A pilot study. Brain Research, 2011, 1381, 228-236.	1.1	47
49	Exon expression and alternatively spliced genes in tourette syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 72-78.	1.1	30
50	Profiles of lacunar and nonlacunar stroke. Annals of Neurology, 2011, 70, 477-485.	2.8	59
51	RNA Expression Profiles From Blood for the Diagnosis of Stroke and Its Causes. Journal of Child Neurology, 2011, 26, 1131-1136.	0.7	9
52	Genome response to tissue plasminogen activator in experimental ischemic stroke. BMC Genomics, 2010, 11, 254.	1.2	17
53	Signatures of cardioembolic and largeâ€vessel ischemic stroke. Annals of Neurology, 2010, 68, 681-692.	2.8	114
54	Brain and Blood microRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 92-101.	2.4	458

#	Article	IF	CITATIONS
55	Brief Focal Cerebral Ischemia That Simulates Transient Ischemic Attacks in Humans Regulates Gene Expression in Rat Peripheral Blood. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 110-118.	2.4	33
56	Recombinant Fv-Hsp70 Protein Mediates Neuroprotection After Focal Cerebral Ischemia in Rats. Stroke, 2010, 41, 538-543.	1.0	65
57	Gene Expression Profiling of Blood for the Prediction of Ischemic Stroke. Stroke, 2010, 41, 2171-2177.	1.0	126
58	Distinctive RNA Expression Profiles in Blood Associated With White Matter Hyperintensities in Brain. Stroke, 2010, 41, 2744-2749.	1.0	54
59	Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood. BMC Medical Genomics, 2009, 2, 49.	0.7	94
60	Arctic Ground Squirrel (<i>Spermophilus Parryii</i>) Hippocampal Neurons Tolerate Prolonged Oxygen—Glucose Deprivation and Maintain Baseline ERK1/2 and JNK Activation Despite Drastic ATP Loss. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1307-1319.	2.4	44
61	Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Research, 2008, 1234, 183-197.	1.1	60
62	Src Kinase Inhibition Improves Acute Outcomes After Experimental Intracerebral Hemorrhage. Stroke, 2007, 38, 1621-1625.	1.0	58
63	The Future of Genomic Profiling of Neurological Diseases Using Blood. Archives of Neurology, 2006, 63, 1529.	4.9	76
64	Isoflurane Neuroprotection in Rat Hippocampal Slices Decreases with Aging. Anesthesiology, 2006, 104, 995-1003.	1.3	38
65	Expression of Endothelial Nitric Oxide Synthase in Ciliated Epithelia of Rats. Journal of Histochemistry and Cytochemistry, 2003, 51, 81-87.	1.3	40
66	Propofol Stimulates Ciliary Motility via the Nitric Oxide–Cyclic GMP Pathway in Cultured Rat Tracheal Epithelial Cells. Anesthesiology, 2000, 93, 482-488.	1.3	17
67	Regulation of Ciliary Beat Frequency by the Nitric Oxide–Cyclic Guanosine Monophosphate Signaling Pathway in Rat Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 175-181.	1.4	107
68	Immunohistochemical Evidence for the NO cGMP Signaling Pathway In Respiratory Ciliated Epithelia of Rat. Journal of Histochemistry and Cytochemistry, 1999, 47, 1369-1374.	1.3	33