Andrea Torroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1200589/publications.pdf

Version: 2024-02-01

all docs

687363 677142 26 509 13 22 h-index citations g-index papers 26 26 26 499 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. Journal of Surgical Research, 2018, 223, 115-122.	1.6	67
2	Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defects. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 237-244.	1.7	44
3	The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Defects Research, 2018, 110, 1055-1064.	1.5	40
4	Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: InÂvivo evaluation and comparison in a cranial bone sheep model. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 2075-2083.	1.7	37
5	Osseodensification for enhancement of spinal surgical hardware fixation. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 275-281.	3.1	33
6	Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally–Printed Bioceramic Scaffolds: Construct Optimization and Effects on Cranial Suture Patency. Plastic and Reconstructive Surgery, 2020, 145, 337e-347e.	1.4	30
7	Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Scientific Reports, 2019, 9, 18439.	3.3	29
8	Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 1303-1311.	3.1	28
9	Biomaterial and biomechanical considerations to prevent risks in implant therapy. Periodontology 2000, 2019, 81, 139-151.	13.4	27
10	Haptic, Physical, and Web-Based Simulators: Are They Underused in Maxillofacial Surgery Training?. Journal of Oral and Maxillofacial Surgery, 2018, 76, 2424.e1-2424.e11.	1.2	24
11	Alveolar Ridge Expansion: Comparison of Osseodensification and Conventional Osteotome Techniques. Journal of Craniofacial Surgery, 2019, 30, 607-610.	0.7	24
12	Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bone. Plastic and Reconstructive Surgery, 2019, 143, 1408-1419.	1.4	22
13	Regeneration of a Pediatric Alveolar Cleft Model Using Three-Dimensionally Printed Bioceramic Scaffolds and Osteogenic Agents: Comparison of Dipyridamole and rhBMP-2. Plastic and Reconstructive Surgery, 2019, 144, 358-370.	1.4	21
14	The effect of plateletâ€rich fibrin exudate addition to porous poly(lacticâ€ <i>co</i> àâ€glycolic acid) scaffold in bone healing: An in vivo study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1304-1310.	3.4	12
15	Transforming the Degradation Rate of \hat{l}^2 -tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing. Annals of Plastic Surgery, 2021, 87, e153-e162.	0.9	12
16	Histo-morphologic characteristics of intra-osseous implants of WE43 Mg alloys with and without heat treatment in an inÂvivo cranial bone sheep model. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 473-478.	1.7	9
17	Does Open Reduction and Internal Fixation Provide a Quality-of-Life Benefit Over Traditional Closed Reduction of Mandibular Condyle Fractures?. Journal of Oral and Maxillofacial Surgery, 2020, 78, 2018-2026.	1.2	8
18	Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration. Journal of Craniofacial Surgery, 2021, 32, 1177-1181.	0.7	8

#	Article	IF	CITATIONS
19	OSAS Surgery and Postoperative Discomfort: Phase I Surgery versus Phase II Surgery. BioMed Research International, 2015, 2015, 1-7.	1.9	7
20	Effects of relative centrifugation force on Lâ€PRF: An in vivo submandibular boney defect regeneration study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2237-2245.	3.4	6
21	Effect of Surgical Instrumentation Variables on the Osseointegration of Narrow- and Wide-Diameter Short Implants. Journal of Oral and Maxillofacial Surgery, 2021, 79, 346-355.	1.2	5
22	Effect of supplemental acid-etching on the early stages of osseointegration: A preclinical model. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104682.	3.1	5
23	Osseodensification drilling vs conventional manual instrumentation technique for posterior lumbar fixation: Exâ€vivo mechanical and histomorphological analysis in an ovine model. Journal of Orthopaedic Research, 2020, 39, 1463-1469.	2.3	4
24	Tissue-engineered alloplastic scaffolds for reconstruction of alveolar defects., 2019,, 505-520.		3
25	3D Printing and Adenosine Receptor Activation for Craniomaxillofacial Regeneration. , 2019, , 255-267.		2
26	WE43 and WE43-T5 Mg alloys screws tested in-vitro cellular adhesion and differentiation assay and in-vivo histomorphologic analysis in an ovine model. Journal of Biomaterials Applications, 2021, 35, 901-911.	2.4	2