Mark T F Telling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12005109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source. Physical Chemistry Chemical Physics, 2005, 7, 1255-1261.	2.8	116
2	Quasi-Elastic Neutron Scattering Studies on Clay Interlayer-Space Highlighting the Effect of the Cation in Confined Water Dynamics. Journal of Physical Chemistry C, 2008, 112, 13982-13991.	3.1	87
3	Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nature Physics, 2019, 15, 262-268.	16.7	47
4	Supercooled Water in PVA Matrixes:Â I. An Incoherent Quasi-Elastic Neutron Scattering (QENS) Study. Journal of Physical Chemistry B, 2003, 107, 8363-8371.	2.6	39
5	Nano-scale hydrogen-bond network improves the durability of greener cements. Scientific Reports, 2013, 3, 2667.	3.3	37
6	A Unified Picture of the Local Dynamics of Poly(dimethylsiloxane) across the Melting Point. Macromolecules, 2003, 36, 8738-8748.	4.8	33
7	Structure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature. Journal of Physical Chemistry B, 2010, 114, 10285-10293.	2.6	29
8	How mobile are protons in the structure of dental glass ionomer cements?. Scientific Reports, 2015, 5, 8972.	3.3	27
9	Effect of tacticity on the local dynamics of polypropylene melts. Journal of Chemical Physics, 2003, 119, 1271-1278.	3.0	26
10	Pressure-dependent deuterium reaction pathways in the Li–N–D system. Physical Chemistry Chemical Physics, 2010, 12, 2089.	2.8	26
11	Nanoscale Mobility of Aqueous Polyacrylic Acid in Dental Restorative Cements. ACS Applied Materials & Interfaces, 2018, 10, 9904-9915.	8.0	23
12	Polymer and Water Dynamics in Poly(vinyl alcohol)/Poly(methacrylate) Networks. A Molecular Dynamics Simulation and Incoherent Neutron Scattering Investigation. Polymers, 2011, 3, 1805-1832.	4.5	21
13	Crystal Structures and Glassy Phase Transition Behavior of Cyclohexene. Crystal Growth and Design, 2008, 8, 512-518.	3.0	20
14	Biodegradable dextran based microgels: a study on network associated water diffusion and enzymatic degradation. Soft Matter, 2012, 8, 2494.	2.7	19
15	Effect of Chain Length and Topological Constraints on Segmental Relaxation in Cyclic PDMS. Macromolecules, 2018, 51, 7209-7223.	4.8	14
16	In situ powder neutron diffraction study of non-stoichiometric phase formation during the hydrogenation of Li3N. Faraday Discussions, 2011, 151, 263.	3.2	12
17	Lyophilised protein dynamics: more than just methyls?. Soft Matter, 2012, 8, 9529.	2.7	11
18	Prolate and Temperatureâ€Responsive Selfâ€Assemblies of Amphiphilic Random Copolymers with Perfluoroalkyl and Polyoxyethylene Side Chains in Solution. Macromolecular Chemistry and Physics, 2018, 219, 1800210.	2.2	11

Mark T F Telling

#	Article	IF	CITATIONS
19	Materialization of a Geometrically Frustrated Magnet in a Hybrid Coordination Framework: A Study of the Iron(II) Oxalate Fluoride Framework, KFe(C2O4)F. Inorganic Chemistry, 2019, 58, 11971-11977.	4.0	11
20	Thermodynamic Investigation ofn-Hexane Thin Films Adsorbed on Magnesium Oxide. Langmuir, 2006, 22, 7203-7207.	3.5	10
21	Molar Mass Dependence of Polyethylene Chain Dynamics. A Quasi-Elastic Neutron Scattering Investigation. Macromolecules, 2013, 46, 216-225.	4.8	9
22	Ammonia Storage in Hydrogen Bond-Rich Microporous Polymers. ACS Applied Materials & Interfaces, 2020, 12, 58161-58169.	8.0	9
23	Fast and Slow Dynamics of Isotactic Polypropylene Melts. Macromolecules, 2008, 41, 1560-1564.	4.8	8
24	Anharmonic Behavior in the Multisubunit Protein Apoferritin as Revealed by Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B, 2008, 112, 10873-10878.	2.6	8
25	Thermal motion in the multi-subunit protein, apoferritin, as probed by high energy resolution neutron spectroscopy. Soft Matter, 2011, 7, 6934.	2.7	7
26	Stochastic molecular motions in the nematic, smectic-A, and solid phases ofp,p′-di-n-heptyl-azoxybenzene as seen by quasielastic neutron scattering andC13cross-polarization magic-angle-spinning NMR. Physical Review E, 2006, 73, 051704.	2.1	6
27	Understanding the Temperatureâ€Responsive Selfâ€Assemblies of Amphiphilic Random Copolymers by SANS in D 2 O Solution. Macromolecular Chemistry and Physics, 2021, 222, 2000447.	2.2	6
28	Structure determination and phase transition behaviour of dimethyl sulfate. Acta Crystallographica Section B: Structural Science, 2006, 62, 280-286.	1.8	5
29	Thermoresponsive and Biodegradable Dextran Based Microgels: Synthesis and Structural Investigation. Macromolecular Symposia, 2013, 329, 27-34.	0.7	1