Kwesi Eshun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12003257/publications.pdf Version: 2024-02-01

KWESI FSHIIN

#	Article	IF	CITATIONS
1	Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations. Applied Surface Science, 2018, 428, 593-597.	6.1	18
2	Two-dimensional hybrid layered materials: strain engineering on the band structure of MoS2/WSe2hetero-multilayers. Nanotechnology, 2017, 28, 365202.	2.6	8
3	Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Applied Physics Letters, 2016, 108, .	3.3	53
4	Dirac fermions induced in strained zigzag phosphorus nanotubes and their applications in field effect transistors. Physical Chemistry Chemical Physics, 2016, 18, 32521-32527.	2.8	3
5	Novel Two-Dimensional Mechano-Electric Generators and Sensors Based on Transition Metal Dichalcogenides. Scientific Reports, 2015, 5, 12854.	3.3	21
6	A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes. Journal of Applied Physics, 2015, 118, .	2.5	45
7	Doping induces large variation in the electrical properties of MoS2 monolayers. Solid-State Electronics, 2015, 106, 44-49.	1.4	17
8	Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Applied Surface Science, 2015, 325, 27-32.	6.1	132