## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12003077/publications.pdf Version: 2024-02-01



ARTICLE IF CITATIONS # A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed 6.6 788 Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893. Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41. 9 15.6 769 Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a 6.6 Benzodithiophene Unit. Journal of the American Chemical Society, 2013, 135, 8484-8487. Solution-Processed Organic Solar Cells Based on Dialkylthiol-Substituted Benzodithiophene Unit 4 6.6 670 with Efficiency near 10%. Journal of the American Chemical Society, 2014, 136, 15529-15532. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature 15.6 510 Photonics, 2017, 11, 85-90. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 459 6 6.6 4929-4934. Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with 397 Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646. A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for Highâ€Performance Organic 11.1 8 289 Solar Cells. Advanced Materials, 2017, 29, 1604964. Over 12% Efficiency Nonfullerene Allâ€Smallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842. 11.1 272 Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High 10 Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced 11.1 214 Materials, 2018, 30, 1704904. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and 4.2 210 low energy loss. Science China Chemistry, 2018, 61, 1307-1313. Nonfullerene Tandem Organic Solar Cells with High Performance of 14.11%. Advanced Materials, 2018, 12 11.1 184 30, e1707508. Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule 11.1 159 Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302. A Halogenation Strategy for over 12% Efficiency Nonfullerene Organic Solar Cells. Advanced Energy 14 10.2 159 Materials, 2018, 8, 1702870. Lowâ€Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and 11.1 Applications. Advanced Materials, 2020, 32, e1906129. An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High 16 3.2 139 Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917. Benzo[1,2-b:4,5-bâ€2]dithiophene (BDT)-based small molecules for solution processed organic solar cells. 5.2 Journal of Materials Chemistry A, 2015, 3, 4765-4776. Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells via a Novel 18 10.2 114 Figure of Merit. Advanced Energy Materials, 2017, 7, 1700465.

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent progress on <scp>allâ€small</scp> molecule organic solar cells using<br><scp>smallâ€molecule</scp> nonfullerene acceptors. InformaÄnÃ-Materiály, 2021, 3, 175-200.                                                                 | 8.5  | 113       |
| 20 | A New Nonfullerene Acceptor with Near Infrared Absorption for High Performance Ternaryâ€Blend<br>Organic Solar Cells with Efficiency over 13%. Advanced Science, 2018, 5, 1800307.                                                        | 5.6  | 111       |
| 21 | A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%.<br>Journal of Materials Chemistry A, 2016, 4, 10409-10413.                                                                         | 5.2  | 104       |
| 22 | Extended Conjugation Length of Nonfullerene Acceptors with Improved Planarity via Noncovalent<br>Interactions for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1801618.                                     | 10.2 | 102       |
| 23 | Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.                                                                                             | 5.8  | 94        |
| 24 | Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of<br>the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of<br>Materials, 2015, 27, 6077-6084.    | 3.2  | 92        |
| 25 | Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions. Advanced Energy Materials, 2018, 8, 1800424.                                                                           | 10.2 | 90        |
| 26 | Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.                                                                                                 | 2.2  | 79        |
| 27 | Highâ€Performance Allâ€Smallâ€Molecule Solar Cells Based on a New Type of Small Molecule Acceptors<br>with Chlorinated End Groups. Advanced Energy Materials, 2018, 8, 1802021.                                                           | 10.2 | 76        |
| 28 | Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i> ]thiophene-Substituted<br>Benzo[1,2- <i>b</i> :4,5-b′]dithiophene for Solution-Processed Solar Cells with High Performance.<br>Chemistry of Materials, 2015, 27, 8414-8423. | 3.2  | 71        |
| 29 | Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2014, 2, 7247-7255.                                                  | 2.7  | 70        |
| 30 | Small Molecule Acceptors with a Nonfused Architecture for High-Performance Organic Photovoltaics. Chemistry of Materials, 2019, 31, 904-911.                                                                                              | 3.2  | 66        |
| 31 | Investigation of Quinquethiophene Derivatives with Different End Groups for High Open Circuit<br>Voltage Solar Cells. Advanced Energy Materials, 2013, 3, 639-646.                                                                        | 10.2 | 65        |
| 32 | High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning.<br>Nano Energy, 2016, 28, 241-249.                                                                                                 | 8.2  | 57        |
| 33 | Triperylene Hexaimides Based All‧mallâ€Molecule Solar Cells with an Efficiency over 6% and Open<br>Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.                                                                | 10.2 | 57        |
| 34 | A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.                                                       | 1.7  | 54        |
| 35 | Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers.<br>Journal of Materials Chemistry A, 2018, 6, 18225-18233.                                                                            | 5.2  | 49        |
| 36 | A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.                                                             | 2.2  | 48        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and<br>Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.                                     | 11.1 | 48        |
| 38 | Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells.<br>Advanced Materials, 2016, 28, 7008-7012.                                                                         | 11.1 | 43        |
| 39 | Asâ€Cast Ternary Organic Solar Cells Based on an Asymmetric Sideâ€Chains Featured Acceptor with<br>Reduced Voltage Loss and 14.0% Efficiency. Advanced Functional Materials, 2020, 30, 1909535.                          | 7.8  | 43        |
| 40 | Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule<br>Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.                                                               | 3.6  | 40        |
| 41 | Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap<br>States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.                 | 10.2 | 36        |
| 42 | Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. Nano Energy, 2020, 67, 104209.                                                                 | 8.2  | 35        |
| 43 | New Insights into the Correlation between Morphology, Excited State Dynamics, and Device<br>Performance of Small Molecule Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600961.                              | 10.2 | 34        |
| 44 | Open-circuit voltage up to 1.07V for solution processed small molecule based organic solar cells.<br>Organic Electronics, 2014, 15, 2285-2294.                                                                           | 1.4  | 32        |
| 45 | The design of quinoxaline based unfused non-fullerene acceptors for high performance and stable organic solar cells. Chemical Engineering Journal, 2022, 427, 131473.                                                    | 6.6  | 32        |
| 46 | Assessing the stability of high performance solution processed small molecule solar cells. Solar<br>Energy Materials and Solar Cells, 2017, 161, 368-376.                                                                | 3.0  | 31        |
| 47 | Design and synthesis of low band gap non-fullerene acceptors for organic solar cells with impressively high Jsc over 21 mA cm_2. Science China Materials, 2017, 60, 819-828.                                             | 3.5  | 29        |
| 48 | All-Small-Molecule Organic Solar Cells Based on Pentathiophene Donor and Alkylated<br>Indacenodithiophene-Based Acceptors with Efficiency over 8%. ACS Applied Energy Materials, 2018, 1,<br>2150-2156.                  | 2.5  | 29        |
| 49 | Investigation of the enhanced performance and lifetime of organic solar cells using solution-processed carbon dots as the electron transport layers. Journal of Materials Chemistry C, 2015, 3, 12403-12409.             | 2.7  | 28        |
| 50 | Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell<br>device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.                                     | 5.2  | 26        |
| 51 | Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene<br>Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 9587-9594.                                                              | 4.0  | 25        |
| 52 | Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.                                                 | 4.2  | 25        |
| 53 | Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric<br>synaptic transistors. Proceedings of the National Academy of Sciences of the United States of<br>America, 2022, 119, . | 3.3  | 25        |
| 54 | A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with<br>high open-circuit voltage. Science China Chemistry, 2015, 58, 339-346.                                              | 4.2  | 23        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chemical Communications, 2017, 53, 451-454.                        | 2.2 | 22        |
| 56 | Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.                                                           | 5.2 | 19        |
| 57 | Flexible organic solar cells for biomedical devices. Nano Research, 2021, 14, 2891-2903.                                                                                                                 | 5.8 | 19        |
| 58 | Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes and Pigments, 2016, 126, 173-178.                                              | 2.0 | 18        |
| 59 | Molecular Origin of Donor- and Acceptor-Rich Domain Formation in Bulk-Heterojunction Solar Cells<br>with an Enhanced Charge Transport Efficiency. Journal of Physical Chemistry C, 2017, 121, 5864-5870. | 1.5 | 18        |
| 60 | Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes and Pigments, 2018, 155, 241-248.                                           | 2.0 | 18        |
| 61 | Cathode interlayer-free organic solar cells with enhanced device performance upon alcohol treatment. Journal of Materials Chemistry C, 2019, 7, 7947-7952.                                               | 2.7 | 17        |
| 62 | A low bandgap carbazole based small molecule for organic solar cells. Organic Electronics, 2015, 24,<br>89-95.                                                                                           | 1.4 | 16        |
| 63 | A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells.<br>Science China Chemistry, 2017, 60, 552-560.                                                      | 4.2 | 16        |
| 64 | Dithienopyrrole Based Small Molecule with Low Band Gap for Organic Solar Cells. Chinese Journal of<br>Chemistry, 2015, 33, 852-858.                                                                      | 2.6 | 15        |
| 65 | Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule<br>Organic Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 13137-13141.                           | 4.0 | 15        |
| 66 | Enhancement of Performance and Mechanism Studies of All-Solution Processed Small-Molecule based<br>Solar Cells with an Inverted Structure. ACS Applied Materials & Interfaces, 2015, 7, 21245-21253.     | 4.0 | 12        |
| 67 | Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. Organic Electronics, 2016, 28, 263-268.                                                   | 1.4 | 12        |
| 68 | Two Thieno[3,2―b ]thiopheneâ€Based Small Molecules as Bifunctional Photoactive Materials for Organic<br>Solar Cells. Solar Rrl, 2018, 2, 1700179.                                                        | 3.1 | 12        |
| 69 | 3-Dimensional non-fullerene acceptors based on triptycene and perylene diimide for organic solar cells. Organic Electronics, 2017, 50, 458-465.                                                          | 1.4 | 11        |
| 70 | Oligothiophene-based small molecules with 3,3′-difluoro-2,2′-bithiophene central unit for solution-processed organic solar cells. Organic Electronics, 2016, 38, 172-179.                                | 1.4 | 8         |
| 71 | Enhancing efficiency for additive–free blade–coated small–molecule solar cells by thermal<br>annealing. Organic Electronics, 2016, 37, 305-311.                                                          | 1.4 | 7         |
| 72 | Oligothiophene based small molecules with a new end group for solution processed organic photovoltaics. Organic Electronics, 2016, 33, 71-77.                                                            | 1.4 | 5         |

| #  | Article                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Unveiling the Molecular Symmetry Dependence of Exciton Dissociation Processes in Small-Molecular<br>Heterojunctions. Journal of Physical Chemistry C, 2018, 122, 26851-26856.                                                                                 | 1.5  | 5         |
| 74 | Device characterization and optimization of small molecule organic solar cells assisted by modelling<br>simulation of the current–voltage characteristics. Physical Chemistry Chemical Physics, 2015, 17,<br>19261-19267.                                     | 1.3  | 2         |
| 75 | Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells:<br>Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019).<br>Advanced Energy Materials, 2019, 9, 1970185. | 10.2 | 1         |
| 76 | Processability: Evaluation of Electron Donor Materials for Solutionâ€Processed Organic Solar Cells<br>via a Novel Figure of Merit (Adv. Energy Mater. 18/2017). Advanced Energy Materials, 2017, 7, .                                                         | 10.2 | 0         |