Brian G Spratt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12002493/publications.pdf

Version: 2024-02-01

180	30,320	81 h-index	167
papers	citations		g-index
183	183	183	20814
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clobal and regional dissemination and evolution of Burkholderia pseudomallei. Nature Microbiology, 2017, 2, 16263.	5.9	124
2	Population genetic structuring of methicillin-resistant Staphylococcus aureus clone EMRSA-15 within UK reflects patient referral patterns. Microbial Genomics, 2017, 3, e000113.	1.0	19
3	Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microbial Genomics, 2016, 2, e000093.	1.0	470
4	Genomic Analysis and Comparison of Two Gonorrhea Outbreaks. MBio, 2016, 7, .	1.8	51
5	Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Research, 2016, 26, 263-270.	2.4	63
6	Whole-Genome Sequencing for Routine Pathogen Surveillance in Public Health: a Population Snapshot of Invasive Staphylococcus aureus in Europe. MBio, 2016, 7 , .	1.8	192
7	Burkholderia pseudomallei Genotype Distribution in the Northern Territory, Australia. American Journal of Tropical Medicine and Hygiene, 2016, 94, 68-72.	0.6	17
8	Improved multilocus sequence typing of Burkholderia pseudomallei and closely related species. Journal of Medical Microbiology, 2016, 65, 992-997.	0.7	18
9	Special feature on evolution and genetics in medicine. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152811.	1.2	O
10	Whole-Genome Sequencing Confirms that Burkholderia pseudomallei Multilocus Sequence Types Common to Both Cambodia and Australia Are Due to Homoplasy. Journal of Clinical Microbiology, 2015, 53, 323-326.	1.8	44
11	Endemic Melioidosis in Residents of Desert Region after Atypically Intense Rainfall in Central Australia, 2011. Emerging Infectious Diseases, 2015, 21, 1038-1040.	2.0	30
12	Capsules. , 2014, , 30-48.		15
13	Changing the Ecology of Pneumococci with Antibiotics and Vaccines. , 2014, , 281-313.		6
14	Mechanisms for Penicillin Resistance in Streptococcus Pneumoniae: Penicillin-Binding Proteins, Gene Transfer, and Cell Wall Metabolism., 2014,, 339-349.		5
15	Macrolide, Quinolone, and Other Non- \hat{l}^2 -Lactam Antibiotic Resistance in Streptococcus Pneumoniae. , 2014, , 350-366.		1
16	Evolutionary and Population Biology of Streptococcus Pneumoniae. , 2014, , 117-135.		6
17	Comparative Genomics of Streptococcus Pneumoniae: Intrastrain Diversity and Genome Plasticity. , 2014, , 15-29.		12
18	Distribution of Burkholderia pseudomallei in Northern Australia, a Land of Diversity. Applied and Environmental Microbiology, 2014, 80, 3463-3468.	1.4	45

#	Article	IF	CITATIONS
19	EpiCollect+: linking smartphones to web applications for complex data collection projects. F1000Research, 2014, 3, 199.	0.8	31
20	A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant <i>Staphylococcus aureus</i> pandemic. Genome Research, 2013, 23, 653-664.	2.4	412
21	Predictors of Hospitals with Endemic Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> . Infection Control and Hospital Epidemiology, 2013, 34, 581-587.	1.0	12
22	Diversity of Methicillin-Resistant Staphylococcus aureus Strains Isolated from Residents of 26 Nursing Homes in Orange County, California. Journal of Clinical Microbiology, 2013, 51, 3788-3795.	1.8	39
23	A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species. PLoS Neglected Tropical Diseases, 2013, 7, e1954.	1.3	153
24	Melioidosis from Contaminated Bore Water and Successful UV Sterilization. American Journal of Tropical Medicine and Hygiene, 2013, 89, 367-368.	0.6	19
25	Melioidosis as a Consequence of Sporting Activity. American Journal of Tropical Medicine and Hygiene, 2013, 89, 365-366.	0.6	13
26	Predicting High Prevalence of Community Methicillin-Resistant Staphylococcus aureus Strains in Nursing Homes. Infection Control and Hospital Epidemiology, 2013, 34, 325-328.	1.0	24
27	Diversity of Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated from Inpatients of 30 Hospitals in Orange County, California. PLoS ONE, 2013, 8, e62117.	1.1	45
28	Multilocus Sequence Typing Scheme for Staphylococcus aureus: Revision of the <i>gmk</i> Locus. Journal of Clinical Microbiology, 2012, 50, 2538-2539.	1.8	24
29	Patient sharing and population genetic structure of methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6763-6768.	3.3	22
30	Differences in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Pediatric and Adult Patients from Hospitals in a Large County in California. Journal of Clinical Microbiology, 2012, 50, 573-579.	1.8	26
31	The 2011 Garrod Lecture: From penicillin-binding proteins to molecular epidemiology. Journal of Antimicrobial Chemotherapy, 2012, 67, 1578-1588.	1.3	13
32	Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9107-9112.	3.3	174
33	Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nature Genetics, 2012, 44, 413-419.	9.4	279
34	Melioidosis in Birds and Burkholderia pseudomallei Dispersal, Australia. Emerging Infectious Diseases, 2011, 17, 1310-1312.	2.0	26
35	The Genomic View of Bacterial Diversification. Science, 2011, 331, 407-409.	6.0	6
36	Analysis of Emergence of Quinolone-Resistant Gonococci in Greece by Combined Use of Neisseria gonorrhoeae Multiantigen Sequence Typing and Multilocus Sequence Typing. Journal of Clinical Microbiology, 2011, 49, 1196-1201.	1.8	20

#	Article	IF	Citations
37	Burkholderia pseudomallei in Unchlorinated Domestic Bore Water, Tropical Northern Australia. Emerging Infectious Diseases, 2011, 17, 1283-1285.	2.0	53
38	Effects of Streptococcus pneumoniae Strain Background on Complement Resistance. PLoS ONE, 2011, 6, e24581.	1.1	27
39	Bayesian semi-supervised classification of bacterial samples using MLST databases. BMC Bioinformatics, 2011, 12, 302.	1.2	17
40	Molecular Characterization of Clinical Burkholderia pseudomallei Isolates from India. American Journal of Tropical Medicine and Hygiene, 2011, 85, 121-123.	0.6	20
41	Comparison of Two Multilocus Sequence Based Genotyping Schemes for Leptospira Species. PLoS Neglected Tropical Diseases, 2011, 5, e1374.	1.3	42
42	Epidemiological Tracking and Population Assignment of the Non-Clonal Bacterium, Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2011, 5, e1381.	1.3	27
43	Poor Clinical Outcome for Meningitis Caused by <i>Haemophilus influenzae</i> Serotype A Strains Containing the IS <i>1016â€bexA</i> Deletion. Journal of Infectious Diseases, 2010, 202, 1577-1584.	1.9	33
44	Geographic Distribution of Staphylococcus aureus Causing Invasive Infections in Europe: A Molecular-Epidemiological Analysis. PLoS Medicine, 2010, 7, e1000215.	3.9	456
45	EpiCollect: Linking Smartphones to Web Applications for Epidemiology, Ecology and Community Data Collection. PLoS ONE, 2009, 4, e6968.	1.1	306
46	Identification of Melioidosis Outbreak by Multilocus Variable Number Tandem Repeat Analysis. Emerging Infectious Diseases, 2009, 15, 169-174.	2.0	39
47	Predicting Phenotype and Emerging Strains among <i>Chlamydia trachomatis </i> Infections. Emerging Infectious Diseases, 2009, 15, 1385-1394.	2.0	87
48	Relative Contributions of Recombination and Mutation to the Diversification of the opa Gene Repertoire of Neisseria gonorrhoeae. Journal of Bacteriology, 2009, 191, 1878-1890.	1.0	24
49	Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens. PLoS Pathogens, 2009, 5, e1000346.	2.1	197
50	Assigning strains to bacterial species via the internet. BMC Biology, 2009, 7, 3.	1.7	204
51	The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity. Science, 2009, 323, 741-746.	6.0	381
52	Primary ocular melioidosis due to a single genotype of Burkholderia pseudomallei in two cats from Arnhem Land in the Northern Territory of Australia. Journal of Feline Medicine and Surgery, 2009, 11, 856-863.	0.6	11
53	Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis. PLoS ONE, 2009, 4, e6072.	1.1	214
54	Genetic Diversity of <i>Burkholderia pseudomallei</i> Isolates in Australia. Journal of Clinical Microbiology, 2008, 46, 249-254.	1.8	39

#	Article	IF	CITATIONS
55	Geographical and demographic clustering of gonorrhoea in London. Sexually Transmitted Infections, 2007, 83, 481-487.	0.8	46
56	Genetic Relatedness of the <i> Streptococcus pneumoniae </i> Capsular Biosynthetic Loci. Journal of Bacteriology, 2007, 189, 7841-7855.	1.0	118
57	Australian and Thai Isolates of <i>Burkholderia pseudomallei</i> Are Distinct by Multilocus Sequence Typing: Revision of a Case of Mistaken Identity. Journal of Clinical Microbiology, 2007, 45, 3828-3829.	1.8	21
58	Predicted Functions and Linkage Specificities of the Products of the <i>Streptococcus pneumoniae </i> Capsular Biosynthetic Loci. Journal of Bacteriology, 2007, 189, 7856-7876.	1.0	114
59	Concordance between <i>Neisseria gonorrhoeae</i> Genotypes Recovered from Known Sexual Contacts. Journal of Clinical Microbiology, 2007, 45, 3564-3567.	1.8	44
60	Recombination and the Nature of Bacterial Speciation. Science, 2007, 315, 476-480.	6.0	512
61	Using BOX-PCR to exclude a clonal outbreak of melioidosis. BMC Infectious Diseases, 2007, 7, 68.	1.3	51
62	Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiology, 2007, 7, 30.	1.3	123
63	Identification of individuals with gonorrhoea within sexual networks: a population-based study. Lancet, The, 2006, 368, 139-146.	6.3	77
64	The impact of homologous recombination on the generation of diversity in bacteria. Journal of Theoretical Biology, 2006, 239, 210-219.	0.8	106
65	Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genetics, 2006, 2, e31.	1.5	661
66	Nonrandom Distribution of Burkholderia pseudomallei Clones in Relation to Geographical Location and Virulence. Journal of Clinical Microbiology, 2006, 44, 2553-2557.	1.8	73
67	Sequences, sequence clusters and bacterial species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1917-1927.	1.8	167
68	Introduction: species and speciation in micro-organisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1897-1898.	1.8	11
69	Modelling bacterial speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 2039-2044.	1.8	88
70	Enhanced Invasiveness of Bovine-Derived Neonatal Sequence Type 17 Group B Streptococcus Is Independent of Capsular Serotype. Clinical Infectious Diseases, 2006, 42, 915-924.	2.9	91
71	Pneumonia and Septicemia Caused by Burkholderia thailandensis in the United States. Journal of Clinical Microbiology, 2006, 44, 4601-4604.	1.8	104
72	Re-evaluating prokaryotic species. Nature Reviews Microbiology, 2005, 3, 733-739.	13.6	1,019

#	Article	IF	Citations
73	Fuzzy species among recombinogenic bacteria. BMC Biology, 2005, 3, 6.	1.7	283
74	Melioidosis in New Caledonia. Emerging Infectious Diseases, 2005, 11, 1607-1609.	2.0	23
75	Neutral microepidemic evolution of bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1968-1973.	3.3	141
76	Identity and Prevalence of Multilocus Sequence Typing-Defined Clones of Group A Streptococci within a Hospital Setting. Journal of Clinical Microbiology, 2005, 43, 1963-1967.	1.8	24
77	Invasiveness of Serotypes and Clones of Streptococcus pneumoniae among Children in Finland. Infection and Immunity, 2005, 73, 431-435.	1.0	137
78	Changing Epidemiologic Profile of Quinoloneâ€ResistantNeisseria gonorrhoeaein London. Journal of Infectious Diseases, 2005, 192, 1191-1195.	1.9	34
79	Multilocus Sequence Typing of Swedish Invasive Group B Streptococcus Isolates Indicates a Neonatally Associated Genetic Lineage and Capsule Switching. Journal of Clinical Microbiology, 2005, 43, 3727-3733.	1.8	151
80	Using Multilocus Sequence Data To Define the Pneumococcus. Journal of Bacteriology, 2005, 187, 6223-6230.	1.0	104
81	The multilocus sequence typing network: mlst.net. Nucleic Acids Research, 2005, 33, W728-W733.	6.5	235
82	Group A Streptococci from a Remote Community Have Novel Multilocus Genotypes but ShareemmTypes and Housekeeping Alleles with Isolates from Worldwide Sources. Journal of Infectious Diseases, 2004, 189, 717-723.	1.9	72
83	Rapid Sequenceâ€Based Identification of Gonococcal Transmission Clusters in a Large Metropolitan Area. Journal of Infectious Diseases, 2004, 189, 1497-1505.	1.9	340
84	Temporal and Geographic Stability of the Serogroupâ€Specific Invasive Disease Potential of Streptococcus pneumoniaein Children. Journal of Infectious Diseases, 2004, 190, 1203-1211.	1.9	312
85	Evolutionary Genetics of the Capsular Locus of Serogroup 6 Pneumococci. Journal of Bacteriology, 2004, 186, 8181-8192.	1.0	93
86	Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9786-9791.	3.3	830
87	Isolates of Burkholderia pseudomallei from Northern Australia Are Distinct by Multilocus Sequence Typing, but Strain Types Do Not Correlate with Clinical Presentation. Journal of Clinical Microbiology, 2004, 42, 5477-5483.	1.8	48
88	Emergence of Penicillinâ€NonsusceptibleStreptococcus pneumoniaeClones Expressing Serotypes Not Present in the Antipneumococcal Conjugate Vaccine. Journal of Infectious Diseases, 2004, 190, 2154-2161.	1.9	128
89	Ability of Pneumococcal Serotypes and Clones To Cause Acute Otitis Media: Implications for the Prevention of Otitis Media by Conjugate Vaccines. Infection and Immunity, 2004, 72, 76-81.	1.0	83
90	Multilocus Sequence Typing of Streptococcus pyogenes Representing Most Known emm Types and Distinctions among Subpopulation Genetic Structures. Journal of Bacteriology, 2004, 186, 4285-4294.	1.0	116

#	Article	IF	CITATIONS
91	eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. Journal of Bacteriology, 2004, 186, 1518-1530.	1.0	1,697
92	Displaying the relatedness among isolates of bacterial species $\tilde{A}^{\varphi}\hat{A}\in\hat{A}^{\psi}$ the eBURST approach. FEMS Microbiology Letters, 2004, 241, 129-134.	0.7	179
93	Multilocus sequence typing of Candida albicans: strategies, data exchange and applications. Infection, Genetics and Evolution, 2004, 4, 243-252.	1.0	104
94	John Maynard Smith (1920–2004). Infection, Genetics and Evolution, 2004, 4, 297-300.	1.0	1
95	A Locus Contained within a Variable Region of Pneumococcal Pathogenicity Island 1 Contributes to Virulence in Mice. Infection and Immunity, 2004, 72, 1587-1593.	1.0	55
96	Exploring the Concept of Clonality in Bacteria. , 2004, 266, 323-352.		63
97	Multilocus Sequence Typing and Evolutionary Relationships among the Causative Agents of Melioidosis and Glanders, Burkholderia pseudomallei and Burkholderia mallei. Journal of Clinical Microbiology, 2003, 41, 2068-2079.	1.8	459
98	MICROBIOLOGY: Stomachs Out of Africa. Science, 2003, 299, 1528-1529.	6.0	7
99	Clonal Relationships between Invasive and CarriageStreptococcus pneumoniaeand Serotype―and Cloneâ€5pecific Differences in Invasive Disease Potential. Journal of Infectious Diseases, 2003, 187, 1424-1432.	1.9	563
100	Characterization of German penicillin non-susceptible serotype 23F pneumococci using multilocus sequence typing. Journal of Medical Microbiology, 2003, 52, 981-987.	0.7	10
101	Characterization of Encapsulated and Noncapsulated Haemophilus influenzae and Determination of Phylogenetic Relationships by Multilocus Sequence Typing. Journal of Clinical Microbiology, 2003, 41, 1623-1636.	1.8	329
102	Group A Streptococcal Infections in Sweden: A Comparative Study of Invasive and Noninvasive Infections and Analysis of Dominant T28 emm28 Isolates. Clinical Infectious Diseases, 2003, 37, 1189-1193.	2.9	50
103	How Clonal Is Staphylococcus aureus ?. Journal of Bacteriology, 2003, 185, 3307-3316.	1.0	560
104	Stability of Serotypes during Nasopharyngeal Carriage of Streptococcus pneumoniae. Journal of Clinical Microbiology, 2003, 41, 386-392.	1.8	67
105	Identification of Multidrug-ResistantStreptococcus pneumoniaeStrains Isolated in Poland by Multilocus Sequence Typing. Microbial Drug Resistance, 2003, 9, 81-86.	0.9	10
106	Multilocus Sequence Typing System for Group B Streptococcus. Journal of Clinical Microbiology, 2003, 41, 2530-2536.	1.8	509
107	Geographic Distribution and Clonal Diversity of Streptococcus pneumoniae Serotype 1 Isolates. Journal of Clinical Microbiology, 2003, 41, 4966-4970.	1.8	131
108	Emergence in Vietnam of Streptococcus pneumoniae Resistant to Multiple Antimicrobial Agents as a Result of Dissemination of the Multiresistant Spain 23F -1 Clone. Antimicrobial Agents and Chemotherapy, 2002, 46, 3512-3517.	1.4	28

#	Article	IF	Citations
109	Influence of Recombination and Niche Separation on the Population Genetic Structure of the Pathogen Streptococcus pyogenes. Infection and Immunity, 2002, 70, 1971-1983.	1.0	77
110	The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7687-7692.	3.3	1,354
111	Population Genetics of Bacterial Pathogens. , 2002, , 445-484.		1
112	Recombination and the Population Structures of Bacterial Pathogens. Annual Review of Microbiology, 2001, 55, 561-590.	2.9	305
113	Multilocus Sequence Typing of Streptococcus pyogenes and the Relationships between emm Type and Clone. Infection and Immunity, 2001, 69, 2416-2427.	1.0	309
114	A Link Between Virulence and Ecological Abundance in Natural Populations of Staphylococcus aureus. Science, 2001, 292, 114-116.	6.0	100
115	Directional Gene Movement from Human-Pathogenic to Commensal-Like Streptococci. Infection and Immunity, 2001, 69, 4858-4869.	1.0	108
116	Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of <i>Staphylococcus aureus</i>). Journal of Clinical Microbiology, 2000, 38, 1008-1015.	1.8	2,746
117	Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidisand Streptococcus pneumoniae. Research in Microbiology, 2000, 151, 465-469.	1.0	98
118	Prevention of pneumococcal disease by vaccination: does serotype replacement matter?. Lancet, The, 2000, 356, 1210-1211.	6.3	150
119	Estimating Recombinational Parameters in Streptococcus pneumoniae From Multilocus Sequence Typing Data. Genetics, 2000, 154, 1439-1450.	1.2	235
120	Identification of the Major Spanish Clones of Penicillin-Resistant Pneumococci via the Internet Using Multilocus Sequence Typing. Journal of Clinical Microbiology, 2000, 38, 977-986.	1.8	56
121	Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology (United Kingdom), 1999, 145, 2023-2031.	0.7	85
122	Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 23F. Microbiology (United Kingdom), 1999, 145, 781-789.	0.7	33
123	Multilocus sequence typing. Trends in Microbiology, 1999, 7, 482-487.	3.5	521
124	Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the Internet. Current Opinion in Microbiology, 1999, 2, 312-316.	2.3	183
125	Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet, The, 1999, 354, 615-616.	6.3	141
126	Bacterial population genetics, evolution and epidemiology. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 701-710.	1.8	182

#	Article	IF	CITATIONS
127	Representational difference analysis of cDNA for the detection of differential gene expression in bacteria: development using a model of iron-regulated gene expression in Neisseria meningitidis. Microbiology (United Kingdom), 1999, 145, 3529-3537.	0.7	30
128	The Three Major Spanish Clones of Penicillin-Resistant Streptococcus pneumoniae Are the Most Common Clones Recovered in Recent Cases of Meningitis in Spain. Journal of Clinical Microbiology, 1999, 37, 3210-3216.	1.8	62
129	Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Molecular Microbiology, 1998, 27, 73-83.	1.2	303
130	A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology (United Kingdom), 1998, 144, 3049-3060.	0.7	982
131	Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae. Microbiology (United) Tj ETQq $1\ 1$	0.784314	rgBT /Over
132	Serotype 19A Variants of the Spanish Serotype 23F Multiresistant Clone of Streptococcus pneumoniae. Microbial Drug Resistance, 1998, 4, 51-55.	0.9	58
133	Identification of Three Major Clones of Multiply Antibiotic-Resistant Streptococcus pneumoniae in Taiwanese Hospitals by Multilocus Sequence Typing. Journal of Clinical Microbiology, 1998, 36, 3514-3519.	1.8	107
134	Arginine-, hypoxanthine-, uracil-requiring isolates of Neisseria gonorrhoeae are a clonal lineage within a non-clonal population. Microbiology (United Kingdom), 1997, 143, 633-640.	0.7	25
135	Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Molecular Microbiology, 1997, 23, 799-812.	1.2	83
136	A comparison of the nucleotide sequences of theadk andrecA genes of pathogenic and commensalNeisseria species: Evidence for extensive interspecies recombination withinadk. Journal of Molecular Evolution, 1996, 43, 631-640.	0.8	76
137	Monofunctional biosynthetic peptidoglycan transglycosylases. Molecular Microbiology, 1996, 19, 639-640.	1.2	50
138	Opa-typing: a high-resolution tool for studying the epidemiology of gonorrhoea. Molecular Microbiology, 1995, 17, 865-875.	1.2	90
139	Interspecies recombination In nature: a meningococcus that has acquired a gonococcal PIB porin. Molecular Microbiology, 1995, 15, 1001-1007.	1.2	43
140	Genetics and Molecular Biology of \hat{l}^2 -Lactam-Resistant Pneumococci. Microbial Drug Resistance, 1995, 1, 29-34.	0.9	97
141	Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology (United Kingdom), 1995, 141, 611-622.	0.7	355
142	Regulation of the permeability of the gonococcal cell envelope by the mtr system. Molecular Microbiology, 1994, 11, 769-775.	1.2	166
143	Chapter 25 Resistance to Î ² -lactam antibiotics. New Comprehensive Biochemistry, 1994, , 517-534.	0.1	15
144	Origin and molecular epidemiologY of penicillin-binding-protein-mediated resistance to \hat{l}^2 -lactam antibiotics. Trends in Microbiology, 1994, 2, 361-366.	3.5	189

#	Article	IF	Citations
145	Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. FEMS Microbiology Letters, 1993, 106, 171-175.	0.7	81
146	Horizontal spread of an altered penicillin-binding protein 2B gene betweenStreptococcus pneumoniaeandStreptococcus oralis. FEMS Microbiology Letters, 1993, 110, 335-339.	0.7	68
147	Ecological separation and genetic isolation of Neisseria gonorrhoeae and Neisseria meningitidis. Current Biology, 1993, 3, 567-572.	1.8	63
148	Epidemiology and Molecular Basis of Penicillin-Resistant Neisseria meningitidis in Spain: A 5-Year History (1985-1989). Clinical Infectious Diseases, 1992, 14, 394-402.	2.9	129
149	Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Molecular Microbiology, 1992, 6, 2135-2146.	1.2	126
150	Genetics of resistance to thirdâ€generation cephalosporins in clinical isolates of <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 1992, 6, 2461-2465.	1.2	197
151	Expression and purification of a soluble form of penicillin-binding protein 2 from both penicillin-susceptible and penicillin-resistant Neisseria gonorrhoeae. Protein Expression and Purification, 1991, 2, 339-349.	0.6	10
152	Localized sex in bacteria. Nature, 1991, 349, 29-31.	13.7	436
153	Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature, 1988, 332, 173-176.	13.7	245
154	Nucleotide sequences of the penicillin-binding protein 5 and 6 genes of Escherichia coli. Nucleic Acids Research, 1988, 16, 1617-1617.	6.5	67
155	Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene, 1986, 41, 337-342.	1.0	487
156	A vector for the construction of translational fusions to TEM \hat{l}^2 -lactamase and the analysis of protein export signals and membrane protein topology. Gene, 1986, 49, 341-349.	1.0	153
157	Resistance to \hat{l}^2 -lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature, 1985, 318, 478-480.	13.7	69
158	The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding proteins 1A and 1B of Escherichia coli K12. FEBS Journal, 1985, 147, 437-446.	0.2	113
159	Amino acid substitutions that reduce the affinity of penicillin-binding protein 3 of Escherichia coli for cephalexin. FEBS Journal, 1985, 151, 111-121.	0.2	64
160	An amino acid substitution that blocks the deacylation step in the enzyme mechanism of penicillin-binding protein 5 of Escherichia coli. FEBS Letters, 1984, 165, 185-189.	1.3	19
161	A gene fusion that localises the penicillin-binding domain of penicillin-binding protein 3 of Escherichia coli. FEBS Letters, 1984, 176, 179-184.	1.3	26
162	SEQUENCE OF PENICILLIN-BINDING PROTEIN 5 OF ESCHERICHIA COLI. , 1983, , 403-408.		23

#	Article	IF	Citations
163	A mecillinam-sensitive peptidoglycan crosslinking reaction in Escherichia, coli. Biochemical and Biophysical Research Communications, 1982, 109, 689-696.	1.0	56
164	Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene, 1982, 18, 335-341.	1.0	403
165	Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature, 1982, 297, 702-704.	13.7	112
166	Deletion of the Penicillin-Binding Protein 6 Gene of <i>Escherichia coli</i> . Journal of Bacteriology, 1982, 152, 904-906.	1.0	57
167	Precursor forms of penicillin-binding proteins 5 and 6 of E. coli cytoplasmic membrane. Nature, 1981, 293, 307-309.	13.7	68
168	Mecillinam Resistance in Escherichia coli: Dissociation of Growth Inhibition and Morphologic Change. Journal of Infectious Diseases, 1981, 143, 114-121.	1.9	16
169	Escherichia coli resistance to \hat{l}^2 -lactam antibiotics through a decrease in the affinity of a target for lethality. Nature, 1978, 274, 713-715.	13.7	97
170	Binding of Thienamycin and Clavulanic Acid to the Penicillin-Binding Proteins of Escherichia coli K-12. Antimicrobial Agents and Chemotherapy, 1977, 12, 406-409.	1.4	119
171	Comparison of the Binding Properties of Two $6\hat{l}^2$ -Amidinopenicillanic Acid Derivatives That Differ in Their Physiological Effects on <i>Escherichia coli</i> . Antimicrobial Agents and Chemotherapy, 1977, 11, 161-166.	1.4	48
172	Mutants of Escherichia coli which lack a component of penicillin-binding protein 1 are viable. FEBS Letters, 1977, 79, 374-378.	1.3	79
173	Properties of the Penicillin-Binding Proteins of Escherichia coli K12. FEBS Journal, 1977, 72, 341-352.	0.2	673
174	Temperature-Sensitive Cell Division Mutants of <i>Escherichia coli</i> with Thermolabile Penicillin-Binding Proteins. Journal of Bacteriology, 1977, 131, 293-305.	1.0	187
175	Identification of the Major Penicillin-Binding Proteins of <i>Escherichia coli</i> as <scp>d</scp> -Alanine Carboxypeptidase IA. Journal of Bacteriology, 1976, 127, 660-663.	1.0	89
176	Penicillin-binding proteins and cell shape in E. coli. Nature, 1975, 254, 516-517.	13.7	405
177	Exploring Genetic Relatedness, Patterns of Evolutionary Descent, and the Population Genetics of Bacterial Pathogens Using Multilocus Sequence Typing., 0,, 495-508.		0
178	What is a Pneumococcus?., 0, , 1-14.		24
179	New Pneumococcal Vaccines: Basic Science Developments. , 0, , 382-402.		6
180	Multilocus Models of Bacterial Population Genetics. , 0, , 93-104.		0