Keisuke Fukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12001975/publications.pdf

Version: 2024-02-01

471509 501196 2,380 36 17 28 citations h-index g-index papers 38 38 38 1986 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval. Cognitive Psychology, 2014, 71, 1-26.	2.2	403
2	Quantity, not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin and Review, 2010, 17, 673-679.	2.8	334
3	Human Variation in Overriding Attentional Capture. Journal of Neuroscience, 2009, 29, 8726-8733.	3.6	295
4	Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 2010, 20, 177-182.	4.2	226
5	Individual Differences in Recovery Time From Attentional Capture. Psychological Science, 2011, 22, 361-368.	3.3	174
6	α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory. Journal of Neuroscience, 2015, 35, 14009-14016.	3.6	122
7	The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity. Journal of Cognitive Neuroscience, 2015, 27, 1601-1616.	2.3	112
8	Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Attention, Perception, and Psychophysics, 2017, 79, 3-23.	1.3	106
9	Neural Limits to Representing Objects Still within View. Journal of Neuroscience, 2013, 33, 8257-8263.	3.6	88
10	Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities. Journal of Cognitive Neuroscience, 2015, 27, 853-865.	2.3	72
11	Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations. Journal of Neurophysiology, 2016, 116, 1715-1727.	1.8	63
12	Prolonged disengagement from attentional capture in normal aging Psychology and Aging, 2013, 28, 77-86.	1.6	54
13	Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5306-5311.	7.1	48
14	Visual working memory continues to develop through adolescence. Frontiers in Psychology, 2015, 6, 696.	2.1	45
15	Impaired Contingent Attentional Capture Predicts Reduced Working Memory Capacity in Schizophrenia. PLoS ONE, 2012, 7, e48586.	2.5	38
16	Individual Differences in Visual Working Memory Capacity. , 2015, , 105-119.		35
17	Visual short-term memory capacity predicts the "bandwidth―of visual long-term memory encoding. Memory and Cognition, 2019, 47, 1481-1497.	1.6	30
18	Predicting and Improving Recognition Memory Using Multiple Electrophysiological Signals in Real Time. Psychological Science, 2015, 26, 1026-1037.	3.3	24

#	Article	IF	Citations
19	Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychonomic Bulletin and Review, 2022, 29, 681-698.	2.8	23
20	What can half a million change detection trials tell us about visual working memory?. Cognition, 2019, 191, 103984.	2.2	20
21	Is the n-back task a measure of unstructured working memory capacity? Towards understanding its connection to other working memory tasks. Acta Psychologica, 2021, 219, 103398.	1.5	16
22	Electrophysiological and behavioral evidence for attentional up-regulation, but not down-regulation, when encoding pictures into long-term memory. Memory and Cognition, 2019, 47, 351-364.	1.6	11
23	Simultaneous estimation procedure reveals the object-based, but not space-based, dependence of visual working memory representations. Cognition, 2021, 209, 104579.	2.2	8
24	Working Memory Content Is Distorted by Its Use in Perceptual Comparisons. Psychological Science, 2022, 33, 816-829.	3.3	8
25	Independent features form integrated objects: Using a novel shape-color "conjunction task―to reconstruct memory resolution for multiple object features simultaneously. Cognition, 2022, 223, 105024.	2.2	6
26	Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term. Psychonomic Bulletin and Review, 2015, 22, 1349-1357.	2.8	5
27	Recognition and rejection each induce forgetting. Psychonomic Bulletin and Review, 2020, 27, 520-528.	2.8	5
28	Induced forgetting of pictures across shifts in context Journal of Experimental Psychology: Human Perception and Performance, 2021, 47, 1091-1102.	0.9	3
29	Parieto-occipital alpha power dynamics selectively code for the storage of spatial locations in visual working memory. Journal of Vision, 2017, 17, 336.	0.3	1
30	Dynamic Representations in Visual Working Memory. Journal of Vision, 2020, 20, 900.	0.3	1
31	Cross-frequency coupling of frontal theta and posterior alpha is unrelated to the fidelity of visual long-term memory encoding. Visual Cognition, 2022, 30, 379-392.	1.6	1
32	The costs and benefits of top-down control over visual long-term memory encoding. Journal of Vision, 2017, 17, 877.	0.3	0
33	Electrophysiological indices of value-driven attentional capture extinction. Journal of Vision, 2017, 17, 982.	0.3	O
34	The efficacy of retroactive control of visual memory encoding depends on preceding oscillatory activities Journal of Vision, 2018, 18, 830.	0.3	0
35	The Number of Encoding Opportunities, but not Encoded Representations in Visual Working Memory Determines Successful Encoding into Visual Long-Term Memory. Journal of Vision, 2019, 19, 291b.	0.3	0
36	What can half a million change detection trials tell us about visual working memory?. Journal of Vision, 2019, 19, 76c.	0.3	0