Hannes Bleuler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12001954/publications.pdf

Version: 2024-02-01

430754 526166 2,667 33 18 27 citations h-index g-index papers 35 35 35 3372 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Control strategies for active lower extremity prosthetics and orthotics: a review. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 1.	2.4	773
2	Active tactile exploration using a brain–machine–brain interface. Nature, 2011, 479, 228-231.	13.7	605
3	Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Scientific Reports, 2016, 6, 30383.	1.6	326
4	Neurological and Robot-Controlled Induction of an Apparition. Current Biology, 2014, 24, 2681-2686.	1.8	121
5	Quantifying the role of motor imagery in brain-machine interfaces. Scientific Reports, 2016, 6, 24076.	1.6	84
6	Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15121-15126.	3.3	74
7	Survey on Surgical Instrument Handle Design. Surgical Innovation, 2012, 19, 50-59.	0.4	65
8	Sensors for Applications in Magnetic Resonance Environments. IEEE/ASME Transactions on Mechatronics, 2008, 13, 335-344.	3.7	56
9	Ligament balancing in TKA: Evaluation of a force-sensing device and the influence of patellar eversion and ligament release. Journal of Biomechanics, 2007, 40, 1709-1715.	0.9	53
10	Development of a Force Amplitude- and Location-Sensing Device Designed to Improve the Ligament Balancing Procedure in TKA. IEEE Transactions on Biomedical Engineering, 2005, 52, 1609-1611.	2.5	51
11	Extending the Body to Virtual Tools Using a Robotic Surgical Interface: Evidence from the Crossmodal Congruency Task. PLoS ONE, 2012, 7, e49473.	1.1	47
12	Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Scientific Reports, 2016, 6, 32293.	1.6	45
13	In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Scientific Reports, 2016, 6, 21758.	1.6	44
14	Control of a Supernumerary Robotic Hand by Foot: An Experimental Study in Virtual Reality. PLoS ONE, 2015, 10, e0134501.	1,1	41
15	EXiO—A Brain-Controlled Lower Limb Exoskeleton for Rhesus Macaques. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 131-141.	2.7	36
16	Cortical and subcortical mechanisms of brainâ€machine interfaces. Human Brain Mapping, 2017, 38, 2971-2989.	1.9	36
17	Towards mixed societies of chickens and robots. , 2010, , .		32
18	Force feedback facilitates multisensory integration during robotic tool use. Experimental Brain Research, 2013, 227, 497-507.	0.7	28

#	Article	IF	CITATIONS
19	Realization of a Diamagnetically Levitating Rotor Driven by Electrostatic Field. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2387-2391.	3.7	28
20	A Haptic Knob with a Hybrid Ultrasonic Motor and Powder Clutch Actuator., 2007,,.		24
21	Diamagnetic suspension system for small rotors. Journal of Micromechatronics, 2001, 1, 131-137.	1.9	12
22	Development of an assistive motorized hip orthosis: Kinematics analysis and mechanical design., 2013, 2013, 6650495.		12
23	Mechanisms for actuated assistive hip orthoses. Robotics and Autonomous Systems, 2015, 73, 59-67.	3.0	12
24	Thought consciousness and source monitoring depend on robotically controlled sensorimotor conflicts and illusory states. IScience, 2021, 24, 101955.	1.9	12
25	Passive diamagnetic contactless suspension rotor with electrostatic glass motor. Micro and Nano Letters, 2019, 14, 1056-1059.	0.6	11
26	Acceleration Sensor Based on Diamagnetic Levitation. , 2005, , 81-90.		7
27	Cogno-Vest: A Torso-Worn, Force Display to Experimentally Induce Specific Hallucinations and Related Bodily Sensations. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 497-506.	2.6	6
28	2-DOF fMRI-Compatible Haptic Interface for Bimanual Motor Tasks with Grip/Load Force Measurement. Springer Tracts in Advanced Robotics, 2008, , 109-129.	0.3	6
29	Congruent Visuo-Tactile Feedback Facilitates the Extension of Peripersonal Space. Lecture Notes in Computer Science, 2018, , 673-684.	1.0	5
30	An External Positioning Mechanism for Robotic Surgery. Journal of System Design and Dynamics, 2011, 5, 1094-1105.	0.3	4
31	Torso-mounted Vibrotactile Interface to Experimentally Induce Illusory Own-body Perceptions. , 2019, ,		4
32	Principles and Test Result of Novel Full Passive Magnetic Levitation Motor with Diamagnetic Disk., 2021,,.		4
33	Exoskeletons as Mechatronic Design Example. Mechanisms and Machine Science, 2019, , 109-117.	0.3	1