Paul Szymanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11998588/publications.pdf Version: 2024-02-01

DALLI SZYMANSKI

#	Article	IF	CITATIONS
1	Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8, 16045.	12.8	359
2	Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2016, 138, 1206-1214.	13.7	210
3	Spatial Separation of Charge Carriers in In ₂ O _{3–<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	14.6	118
4	Near-Infrared Asymmetrical Squaraine Sensitizers for Highly Efficient Dye Sensitized Solar Cells: The Effect of π-Bridges and Anchoring Groups on Solar Cell Performance. Chemistry of Materials, 2015, 27, 2480-2487.	6.7	104
5	Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8011-E8020.	7.1	89
6	Effect of Molecular Structure Perturbations on the Performance of the D–Aâ^'π–A Dye Sensitized Solar Cells. Chemistry of Materials, 2014, 26, 4486-4493.	6.7	73
7	Energy-Transfer Efficiency in Eu-Doped ZnO Thin Films: The Effects of Oxidative Annealing on the Dynamics and the Intermediate Defect States. ACS Applied Materials & Interfaces, 2014, 6, 1765-1772.	8.0	62
8	A Step Toward Efficient Panchromatic Multi-Chromophoric Sensitizers for Dye Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 6305-6313.	6.7	57
9	Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	41
10	Two-Photon Photoemission of Ultrathin Film PTCDA Morphologies on Ag(111). Journal of Physical Chemistry C, 2008, 112, 2506-2513.	3.1	34
11	Role of Solvent–Oxygen Ion Pairs in Photooxidation of CdSe Nanocrystal Quantum Dots. ACS Nano, 2012, 6, 2371-2377.	14.6	33
12	Electronic Properties and Structure of Assemblies of CdSe Nanocrystal Quantum Dots and Ruâ€Polypyridine Complexes Probed by Steady State and Timeâ€Resolved Photoluminescence. Advanced Functional Materials, 2011, 21, 3159-3168.	14.9	26
13	Deposition of loosely bound organic D–A–π–A′ dyes on sensitized TiO ₂ film: a possible strategy to suppress charge recombination and enhance power conversion efficiency in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 11229-11234.	10.3	25
14	The photoluminescence properties of undoped & Eu-doped ZnO thin films grown by RF sputtering on sapphire and silicon substrates. Applied Surface Science, 2015, 359, 356-363.	6.1	24
15	Measurement and dynamics of the spatial distribution of an electron localized at a metal–dielectric interface. Journal of Chemical Physics, 2004, 120, 845-856.	3.0	18
16	Adsorption-state-dependent subpicosecond photoinduced desorption dynamics. Journal of Chemical Physics, 2007, 126, 214709.	3.0	18
17	Different Methods of Increasing the Mechanical Strength of Gold Nanocages. Journal of Physical Chemistry Letters, 2012, 3, 3527-3531.	4.6	15
18	Determination of Band Curvatures by Angle-Resolved Two-Photon Photoemission in Thin Films of C60on Ag(111). Journal of Physical Chemistry B, 2006, 110, 10002-10010.	2.6	14

Paul Szymanski

#	Article	IF	CITATIONS
19	Temperature-Dependent Femtosecond Photoinduced Desorption in CO/Pd(111). Journal of Physical Chemistry A, 2007, 111, 12524-12533.	2.5	13
20	Ultrafast Electron Dynamics at Metal Interfaces:Â Intraband Relaxation of Image State Electrons as Friction. Journal of Physical Chemistry B, 2005, 109, 20370-20378.	2.6	12
21	The Adsorbate Electron Affinity Dependence of Femtosecond Electron Dynamics at Dielectric/Metal Interfaces. Journal of the Chinese Chemical Society, 2000, 47, 759-763.	1.4	6
22	The Ultrafast Dynamics of Image Potential State Electrons at the Dimethylsulfoxide/Ag(111) Interface. Journal of Physical Chemistry C, 2008, 112, 6880-6886.	3.1	5
23	The Last Step in Converting the Surface Plasmonic Energy into Heat by Nanocages and Nanocubes on Substrates. Small, 2013, 9, 3934-3938.	10.0	2
24	Electronic and Vibrational Dynamics of Hollow Au Nanocages Embedded in Cu2 O Shells. Photochemistry and Photobiology, 2015, 91, 599-606.	2.5	2