Brian C O'neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199799/publications.pdf Version: 2024-02-01

		47006	26613
111	17,176	47	107
papers	citations	h-index	g-index
127	127	127	14026
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SSPâ€Based Landâ€Use Change Scenarios: A Critical Uncertainty in Future Regional Climate Change Projections. Earth's Future, 2021, 9, e2020EF001782.	6.3	18
2	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	7.1	236
3	Different Spatiotemporal Patterns in Global Human Population and Builtâ€Up Land. Earth's Future, 2021, 9, e2020EF001920.	6.3	12
4	Climate scenarios and their relevance and implications for impact studies. , 2020, , 11-29.		1
5	Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10, 1074-1084.	18.8	245
6	Parallel Extended Path Method for Solving Perfect Foresight Models. Computational Economics, 2020, 58, 517.	2.6	2
7	Burning embers: towards more transparent and robust climate-change risk assessments. Nature Reviews Earth & Environment, 2020, 1, 516-529.	29.7	29
8	Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nature Communications, 2020, 11, 2302.	12.8	274
9	Assessing the costs of historical inaction on climate change. Scientific Reports, 2020, 10, 9173.	3.3	31
10	U.S. State-level Projections of the Spatial Distribution of Population Consistent with Shared Socioeconomic Pathways. Sustainability, 2020, 12, 3374.	3.2	18
11	The effect of education on determinants of climate change risks. Nature Sustainability, 2020, 3, 520-528.	23.7	36
12	Population scenarios for U.S. states consistent with shared socioeconomic pathways. Environmental Research Letters, 2020, 15, 094097.	5.2	9
13	Empirically based spatial projections of US population age structure consistent with the shared socioeconomic pathways. Environmental Research Letters, 2019, 14, 114038.	5.2	11
14	Data-driven spatial modeling of global long-term urban land development: The SELECT model. Environmental Modelling and Software, 2019, 119, 458-471.	4.5	30
15	Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications, 2019, 10, 136.	12.8	85
16	The use of the Community Earth System Model in human dimensions climate research and applications. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e582.	8.1	0
17	A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change, 2018, 146, 303-318.	3.6	71
18	Avoiding population exposure to heat-related extremes: demographic change vs climate change. Climatic Change, 2018, 146, 423-437.	3.6	87

#	Article	IF	CITATIONS
19	The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperat targets. Nature Climate Change, 2018, 8, 319-324.	ure 18.8	99
20	Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS). Climatic Change, 2018, 146, 517-531.	3.6	36
21	The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis. Climatic Change, 2018, 146, 287-301.	3.6	27
22	Parallel parameter optimization algorithm in dynamic general equilibrium models. IFAC-PapersOnLine, 2018, 51, 562-567.	0.9	2
23	Economic and biophysical impacts on agriculture under 1.5 °C and 2 °C warming. Environmental Research Letters, 2018, 13, 115006.	5.2	10
24	An introduction to the special issue on the Benefits of Reduced Anthropogenic Climate changE (BRACE). Climatic Change, 2018, 146, 277-285.	3.6	4
25	Modelling feedbacks between human and natural processes in the land system. Earth System Dynamics, 2018, 9, 895-914.	7.1	65
26	Global warming policy: Is population left out in the cold?. Science, 2018, 361, 650-652.	12.6	115
27	Determinants of Urban Growth during Demographic and Mobility Transitions: Evidence from India, Mexico, and the US. Population and Development Review, 2018, 44, 363-389.	2.1	23
28	Global urbanization projections for the Shared Socioeconomic Pathways. Global Environmental Change, 2017, 42, 193-199.	7.8	448
29	The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 2017, 42, 169-180.	7.8	1,656
30	Downscaling heterogeneous household outcomes in dynamic CGE models for energy-economic analysis. Energy Economics, 2017, 65, 87-97.	12.1	12
31	IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7, 28-37.	18.8	266
32	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	7.8	2,966
33	Community climate simulations to assess avoided impacts in 1.5 and 2â€ [–] °C futures. Earth System Dynamics, 2017, 8, 827-847.	7.1	153
34	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	3.6	2,084
35	Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, 2016, 11, 084003.	5.2	476
36	Climate impacts of geoengineering in a delayed mitigation scenario. Geophysical Research Letters, 2016, 43, 8222-8229.	4.0	60

#	Article	IF	CITATIONS
37	What would it take to achieve the Paris temperature targets?. Geophysical Research Letters, 2016, 43, 7133-7142.	4.0	164
38	Reply to 'Volcanic effects on climate'. Nature Climate Change, 2016, 6, 4-5.	18.8	4
39	Future population exposure to US heat extremes. Nature Climate Change, 2015, 5, 652-655.	18.8	270
40	Plausible reductions in future population growth and implications for the environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E506.	7.1	7
41	Equilibrium climate sensitivity in light of observations over the warming hiatus. Nature Climate Change, 2015, 5, 449-453.	18.8	44
42	Methods for including income distribution in global CGE models for long-term climate change research. Energy Economics, 2015, 51, 530-543.	12.1	43
43	Scenarios for vulnerability: opportunities and constraints in the context of climate change and disaster risk. Climatic Change, 2015, 133, 53-68.	3.6	96
44	Developing Climate Model Comparisons. Eos, 2014, 95, 462-462.	0.1	3
45	Towards decision-based global land use models for improved understanding of the Earth system. Earth System Dynamics, 2014, 5, 117-137.	7.1	88
46	Enhancing engagement between the population, environment, and climate research communities: the shared socio-economic pathway process. Population and Environment, 2014, 35, 231-242.	3.0	24
47	A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 2014, 122, 387-400.	3.6	1,698
48	A new scenario framework for Climate Change Research: scenario matrix architecture. Climatic Change, 2014, 122, 373-386.	3.6	510
49	Systematic construction of global socioeconomic pathways using internally consistent element combinations. Climatic Change, 2014, 122, 431-445.	3.6	78
50	A new scenario framework for climate change research: background, process, and future directions. Climatic Change, 2014, 122, 363-372.	3.6	169
51	A New Toolkit for Developing Scenarios for Climate Change Research and Policy Analysis. Environment, 2014, 56, 6-16.	1.4	24
52	Spatial modeling of agricultural land use change at global scale. Ecological Modelling, 2014, 291, 152-174.	2.5	98
53	2020 emissions levels required to limit warming to below 2 °C. Nature Climate Change, 2013, 3, 405-412.	18.8	159
54	Emission metrics under the 2°C climate stabilization target. Climatic Change, 2013, 117, 933-941.	3.6	37

#	Article	IF	CITATIONS
55	Historically grounded spatial population projections for the continental United States. Environmental Research Letters, 2013, 8, 044021.	5.2	39
56	Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. Journal of Climate, 2012, 25, 3071-3095.	3.2	255
57	A unifying framework for metrics for aggregating the climate effect of different emissions. Environmental Research Letters, 2012, 7, 044006.	5.2	55
58	Demographic change and carbon dioxide emissions. Lancet, The, 2012, 380, 157-164.	13.7	185
59	The effect of urbanization on energy use in India and China in the iPETS model. Energy Economics, 2012, 34, S339-S345.	12.1	139
60	Urban and rural energy use and carbon dioxide emissions in Asia. Energy Economics, 2012, 34, S272-S283.	12.1	105
61	The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environmental Change, 2012, 22, 807-822.	7.8	382
62	Mapping the road ahead. Nature Climate Change, 2011, 1, 352-353.	18.8	12
63	The response of the climate system to very high greenhouse gas emission scenarios. Environmental Research Letters, 2011, 6, 034005.	5.2	13
64	Global demographic trends and future carbon emissions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17521-17526.	7.1	359
65	Mitigation implications of midcentury targets that preserve long-term climate policy options. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1011-1016.	7.1	56
66	Evaluating Global Warming Potentials with historical temperature. Climatic Change, 2009, 96, 443-466.	3.6	56
67	Insufficient forcing uncertainty underestimates the risk of high climate sensitivity. Geophysical Research Letters, 2009, 36, .	4.0	29
68	Learning about parameter and structural uncertainty in carbon cycle models. Climatic Change, 2008, 89, 23-44.	3.6	15
69	Negative learning. Climatic Change, 2008, 89, 155-172.	3.6	64
70	Population, uncertainty, and learning in climate change decision analysis. Climatic Change, 2008, 89, 87-123.	3.6	9
71	Learning and climate change: an introduction and overview. Climatic Change, 2008, 89, 1-6.	3.6	10
72	Population aging and future carbon emissions in the United States. Energy Economics, 2008, 30, 642-675.	12.1	176

#	Article	IF	CITATIONS
73	Where next with global environmental scenarios?. Environmental Research Letters, 2008, 3, 045012.	5.2	25
74	Learning from global emissions scenarios. Environmental Research Letters, 2008, 3, 045014.	5.2	11
75	The Limits of Consensus. Science, 2007, 317, 1505-1506.	12.6	176
76	Impacts of Demographic Trends on US Household Size and Structure. Population and Development Review, 2007, 33, 567-591.	2.1	29
77	Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technological Forecasting and Social Change, 2007, 74, 980-1029.	11.6	142
78	Probabilistic temperature change projections and energy system implications of greenhouse gas emission scenarios. Technological Forecasting and Social Change, 2007, 74, 936-961.	11.6	16
79	Integrated assessment of uncertainties in greenhouse gas emissions and their mitigation: Introduction and overview. Technological Forecasting and Social Change, 2007, 74, 873-886.	11.6	32
80	Interim targets and the climate treaty regime. Climate Policy, 2006, 5, 639-645.	5.1	9
81	Learning about the carbon cycle from global budget data. Geophysical Research Letters, 2006, 33, .	4.0	34
82	Avoiding hazards of best-guess climate scenarios. Nature, 2006, 440, 740-740.	27.8	3
83	The Consistency of IPCC's SRES Scenarios to 1990–2000 Trends and Recent Projections. Climatic Change, 2006, 75, 9-46.	3.6	71
84	Learning and climate change. Climate Policy, 2006, 6, 585-589.	5.1	20
85	Learning and climate change. Climate Policy, 2006, 6, 585-589.	5.1	6
86	Anthropogenic Drivers of Ecosystem Change: an Overview. Ecology and Society, 2006, 11, .	2.3	229
87	Accuracy of past projections of US energy consumption. Energy Policy, 2005, 33, 979-993.	8.8	62
88	Population Scenarios Based on Probabilistic Projections: An Application for the Millennium Ecosystem Assessment. Population and Environment, 2005, 26, 229-254.	3.0	20
89	Climate change impacts are sensitive to the concentration stabilization path. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16411-16416.	7.1	73
90	Toward a New Model for Probabilistic Household Forecasts. International Statistical Review, 2004, 72, 51-64.	1.9	3

#	Article	IF	CITATIONS
91	Conditional Probabilistic Population Forecasting. International Statistical Review, 2004, 72, 157-166.	1.9	11
92	Conditional Probabilistic Population Projections: An Application to Climate Change. International Statistical Review, 2004, 72, 167-184.	1.9	22
93	Demographic composition and projections of car use in Austria. Vienna Yearbook of Population Research, 2004, 1, 175-202.	0.6	28
94	Economics, Natural Science, and the Costs of Global Warming Potentials. Climatic Change, 2003, 58, 251-260.	3.6	43
95	Planning for Future Energy Resources. Science, 2003, 300, 581b-584.	12.6	22
96	DEMOGRAPHICS: Enhanced: Europe's Population at a Turning Point. Science, 2003, 299, 1991-1992.	12.6	238
97	CLIMATE CHANGE: Dangerous Climate Impacts and the Kyoto Protocol. Science, 2002, 296, 1971-1972.	12.6	294
98	The Jury is Still Out on Global Warming Potentials. Climatic Change, 2000, 44, 427-443.	3.6	87
99	The Greenhouse Externality to Childbearing: A Sensitivity Analysis. Climatic Change, 2000, 47, 283-324.	3.6	14
100	Cairo and climate change: a win–win opportunity. Global Environmental Change, 2000, 10, 93-96.	7.8	11
101	The Long-Term Effect of the Timing of Fertility Decline on Population Size. Effet a long terme de la configuration temporelle de la baisse du taux de fecondite sur les effectifs de population. La oportunidad en que se registra la disminucion de la fecundidad y su efecto a largo plazo en el tamano de la poblacion. Population and Development Review, 1999, 25, 749-756.	2.1	9
102	Combat climate change by reducing fertility. Nature, 1998, 396, 307-307.	27.8	5
103	Population and global warming with and without CO2 targets. Population and Environment, 1997, 18, 389-413.	3.0	20
104	Measuring Time in the Greenhouse; An Editorial Essay. Climatic Change, 1997, 37, 491-505.	3.6	7
105	Comment on "The lifetime of excess atmospheric carbon dioxide―by Berrien Moore III and B. H. Braswell. Global Biogeochemical Cycles, 1995, 9, 167-169.	4.9	5
106	Reservoir timescales for anthropogenic Co2 in the atmosphere. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 378-389.	1.6	20
107	Pulsations in seafloor spreading rates and transit time dynamics. Geophysical Research Letters, 1994, 21, 1947-1950.	4.0	7
108	Reservoir timescales for anthropogenic Co2 in the atmosphere. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 378-389.	1.6	6

#	Article	IF	CITATIONS
109	A Guide to Global Population Projections. Demographic Research, 0, 4, 203-288.	3.0	79
110	A spatial population downscaling model for integrated human-environment analysis in the United States. Demographic Research, 0, 43, 1483-1526.	3.0	8
111	The importance of reclassification to understanding urban growth: A demographic decomposition of the United States, 1990–2010. Population, Space and Place, 0, , .	2.3	6