
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11996597/publications.pdf Version: 2024-02-01

FOWARD L RROOK

#	Article	IF	CITATIONS
1	Rapid post-glacial bedrock weathering in coastal Norway. Geomorphology, 2022, 397, 108003.	2.6	1
2	Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores. Climate of the Past, 2022, 18, 631-647.	3.4	4
3	Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 2021, 14, 91-96.	12.9	53
4	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	12.6	61
5	Enhanced moisture delivery into Victoria Land, East Antarctica, during the early Last Interglacial: implications for West Antarctic Ice Sheet stability. Climate of the Past, 2021, 17, 1841-1855.	3.4	5
6	Ice core evidence for atmospheric oxygen decline since the Mid-Pleistocene transition. Science Advances, 2021, 7, eabj9341.	10.3	6
7	Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica Et Cosmochimica Acta, 2020, 270, 409-430.	3.9	20
8	Widespread early Holocene deglaciation, Washington Land, northwest Greenland. Quaternary Science Reviews, 2020, 231, 106181.	3.0	10
9	The SP19 chronology for the South Pole Ice Core – Part 2: gas chronology, Δage, and smoothing of atmospheric records. Climate of the Past, 2020, 16, 2431-2444.	3.4	16
10	An 83 000-year-old ice core from Roosevelt Island, Ross Sea, Antarctica. Climate of the Past, 2020, 16, 1691-1713.	3.4	14
11	N ₂ O changes from the Last Glacial Maximum to the preindustrial – Part 1: Quantitative reconstruction of terrestrial and marine emissions using N ₂ O stable isotopes in ice cores. Biogeosciences, 2019, 16, 3997-4021.	3.3	12
12	Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Climate of the Past, 2019, 15, 1537-1556.	3.4	14
13	10Be age constraints on latest Pleistocene and Holocene cirque glaciation across the western United States. Npj Climate and Atmospheric Science, 2019, 2, .	6.8	23
14	Antarctic temperature and CO ₂ : near-synchrony yet variable phasing during the last deglaciation. Climate of the Past, 2019, 15, 913-926.	3.4	20
15	The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting. Climate of the Past, 2019, 15, 1793-1808.	3.4	38
16	Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 2019, 574, 663-666.	27.8	88
17	Early to Late Holocene Surface Exposure Ages From Two Marineâ€Terminating Outlet Glaciers in Northwest Greenland. Geophysical Research Letters, 2018, 45, 7028-7039.	4.0	14
18	Antarctic and global climate history viewed from ice cores. Nature, 2018, 558, 200-208.	27.8	96

#	Article	IF	CITATIONS
19	Atmospheric methane variability: Centennialâ€scale signals in the Last Glacial Period. Global Biogeochemical Cycles, 2017, 31, 575-590.	4.9	15
20	Synchronous volcanic eruptions and abrupt climate change â^¼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10035-10040.	7.1	58
21	Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Climate of the Past, 2017, 13, 943-958.	3.4	15
22	Atmospheric methane control mechanisms during the early Holocene. Climate of the Past, 2017, 13, 1227-1242.	3.4	16
23	Does δ ¹⁸ O of O ₂ record meridional shifts in tropical rainfall?. Climate of the Past, 2017, 13, 1323-1338.	3.4	26
24	Local artifacts in ice core methane records caused by layered bubble trapping and in situ production: a multi-site investigation. Climate of the Past, 2016, 12, 1061-1077.	3.4	23
25	The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31â€ ⁻ kaâ€ ⁻ BP). Climat of the Past, 2016, 12, 769-786.	te 3.4	137
26	Reconstructing the last interglacial at Summit, Greenland: Insights from GISP2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9710-9715.	7.1	40
27	Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica Et Cosmochimica Acta, 2016, 177, 62-77.	3.9	18
28	Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3465-3470.	7.1	109
29	Cosmogenic dating of Late Pleistocene glaciation, southern tropical Andes, Peru. Journal of Quaternary Science, 2015, 30, 841-847.	2.1	19
30	Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2558-2574.	3.3	39
31	Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science, 2015, 348, 1016-1019.	12.6	118
32	Comment on "Synchronous records of pCO2 and Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas―by Steinthorsdottir etÂal. Quaternary Science Reviews, 2015, 107, 267-270.	3.0	2
33	Links between atmospheric carbon dioxide, theÂland carbon reservoir and climate over theÂpast millennium. Nature Geoscience, 2015, 8, 383-387.	12.9	66
34	lsotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature, 2014, 516, 234-237.	27.8	38
35	Radiometric ⁸¹ Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6876-6881.	7.1	57
36	Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nature Communications, 2014, 5, 3723.	12.8	82

#	Article	IF	CITATIONS
37	An ice core record of near-synchronous global climate changes at the BÃ,lling transition. Nature Geoscience, 2014, 7, 459-463.	12.9	48
38	Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 2014, 514, 616-619.	27.8	380
39	Greenland temperature response to climate forcing during the last deglaciation. Science, 2014, 345, 1177-1180.	12.6	226
40	Earliest Holocene south Greenland ice sheet retreat within its late Holocene extent. Geophysical Research Letters, 2014, 41, 5514-5521.	4.0	50
41	Response of atmospheric CO ₂ to the abrupt cooling event 8200 years ago. Geophysical Research Letters, 2014, 41, 604-609.	4.0	15
42	Continuous methane measurements from a late Holocene Greenland ice core: Atmospheric and in-situ signals. Earth and Planetary Science Letters, 2013, 368, 9-19.	4.4	65
43	¹⁰ <scp>B</scp> e exposure age constraints on the <scp>L</scp> ate <scp>W</scp> eichselian iceâ€sheet geometry and dynamics in interâ€iceâ€stream areas, western <scp>S</scp> valbard. Boreas, 2013, 42, 43-56.	2.4	26
44	Atmospheric CO ₂ over the last 1000 years: A highâ€resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochemical Cycles, 2012, 26, .	4.9	68
45	In situ cosmogenic radiocarbon production and 2â€D ice flow line modeling for an Antarctic blue ice area. Journal of Geophysical Research, 2012, 117, .	3.3	6
46	Abrupt change in atmospheric CO ₂ during the last ice age. Geophysical Research Letters, 2012, 39, .	4.0	28
47	Multidecadal variability of atmospheric methane, 1000–1800 C.E Journal of Geophysical Research, 2011, 116, .	3.3	78
48	Methane and megafauna. Nature Geoscience, 2011, 4, 271-272.	12.9	7
49	Modes of Clobal Climate Variability during Marine Isotope Stage 3 (60–26 ka). Journal of Climate, 2010, 23, 1581-1588.	3.2	17
50	Searching for the Oldest Ice. Eos, 2010, 91, 357-358.	0.1	14
51	Methane from the East Siberian Arctic Shelf. Science, 2010, 329, 1146-1147.	12.6	9
52	¹⁴ CH ₄ Measurements in Greenland Ice: Investigating Last Glacial Termination CH ₄ Sources. Science, 2009, 324, 506-508.	12.6	88
53	lce stratigraphy at the Pâkitsoq ice margin, West Greenland, derived from gas records. Journal of Glaciology, 2009, 55, 411-421.	2.2	12
54	Oxygen-18 of O ₂ Records the Impact of Abrupt Climate Change on the Terrestrial Biosphere. Science, 2009, 324, 1431-1434.	12.6	152

#	Article	IF	CITATIONS
55	Flux and size fractionation of 3He in interplanetary dust from Antarctic ice core samples. Earth and Planetary Science Letters, 2009, 286, 565-569.	4.4	19
56	Relative timing and variability of atmospheric methane and GISP2 oxygen isotopes between 68 and 86 ka. Global Biogeochemical Cycles, 2009, 23, .	4.9	19
57	A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples. Journal of Glaciology, 2009, 55, 499-506.	2.2	33
58	Cosmogenic 10 Be ages on the Pomeranian Moraine, Poland. Boreas, 2008, 34, 186-191.	2.4	11
59	Timing of the last deglaciation in Lithuania. Boreas, 2008, 37, 426-433.	2.4	46
60	Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quaternary Science Reviews, 2008, 27, 320-336.	3.0	79
61	Atmospheric CO ₂ and Climate on Millennial Time Scales During the Last Glacial Period. Science, 2008, 322, 83-85.	12.6	250
62	A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon. Journal of Glaciology, 2008, 54, 233-244.	2.2	16
63	A New Method for Analyzing ¹⁴ C of Methane in Ancient Air Extracted from Glacial Ice. Radiocarbon, 2008, 50, 53-73.	1.8	18
64	CO ₂ diffusion in polar ice: observations from naturally formed CO ₂ spikes in the Siple Dome (Antarctica) ice core. Journal of Glaciology, 2008, 54, 685-695.	2.2	60
65	Geochemical proxies of North American freshwater routing during the Younger Dryas cold event. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6556-6561.	7.1	162
66	Rapid Holocene Deglaciation of the Labrador Sector of the Laurentide Ice Sheet. Journal of Climate, 2007, 20, 5126-5133.	3.2	62
67	Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews, 2007, 26, 1212-1222.	3.0	213
68	Impact of the ocean's Overturning circulation on atmospheric CO2. Geophysical Monograph Series, 2007, , 315-334.	0.1	17
69	Atmospheric CO2and climate from 65 to 30 ka B.P Geophysical Research Letters, 2007, 34, .	4.0	59
70	Abrupt changes in atmospheric methane at the MIS 5b–5a transition. Geophysical Research Letters, 2007, 34, .	4.0	30
71	The surface geometry of the Last Glacial Maximum ice sheet in the AndÃ,ya‣kÃ¥nland region, northern Norway, constrained by surface exposure dating and clay mineralogy. Boreas, 2007, 36, 227-239.	2.4	33
72	Timing of the last deglaciation in Belarus. Boreas, 2007, 36, 307-313.	2.4	33

#	Article	IF	CITATIONS
73	Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: Implications for Termination II in Greenland. Journal of Geophysical Research, 2006, 111, .	3.3	46
74	Glacial survival of blockfields on the Varanger Peninsula, northern Norway. Geomorphology, 2006, 82, 255-272.	2.6	51
75	Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core. Quaternary Science Reviews, 2006, 25, 865-875.	3.0	60
76	In situ 10Be exposure ages from southeastern Norway: implications for the geometry of the Weichselian Scandinavian ice sheet. Quaternary Science Reviews, 2006, 25, 1097-1109.	3.0	43
77	Cosmogenic 10 Be exposure age dating across Early to Late Weichselian ice-marginal zones in northwestern Russia. Boreas, 2006, 35, 576-586.	2.4	15
78	Ice Record of Â13C for Atmospheric CH4 Across the Younger Dryas-Preboreal Transition. Science, 2006, 313, 1109-1112.	12.6	80
79	ATMOSPHERIC SCIENCE: Tiny Bubbles Tell All. Science, 2005, 310, 1285-1287.	12.6	22
80	Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quaternary Science Reviews, 2005, 24, 1333-1343.	3.0	130
81	Comment on "Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores―by C. Wunsch. Quaternary Science Reviews, 2004, 23, 2053-2054.	3.0	24
82	Cosmogenic Be dating of the Salpausselk� I Moraine in southwestern Finland. Quaternary Science Reviews, 2004, 23, 2283-2289.	3.0	49
83	Variable responses of western U.S. glaciers during the last deglaciation. Geology, 2004, 32, 81.	4.4	112
84	Northwest Svalbard during the last glaciation: Ice-free areas existed. Geology, 2003, 31, 905.	4.4	87
85	Cosmogenic 10Be ages of the Saglek Moraines, Torngat Mountains, Labrador. Geology, 2003, 31, 617.	4.4	28
86	A northern lead in the orbital band: north–south phasing of Ice-Age events. Quaternary Science Reviews, 2002, 21, 431-441.	3.0	97
87	Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the Last Glacial Period. Science, 2001, 291, 109-112.	12.6	1,019
88	Cosmogenic 3He and 10Be chronologies of the late Pinedale northern Yellowstone ice cap, Montana, USA. Geology, 2001, 29, 1095.	4.4	81
89	Ice Sheets and the Ice-Core Record of Climate Change. International Geophysics, 2000, 72, 459-497.	0.6	7
90	On the origin and timing of rapid changes in atmospheric methane during the Last Glacial Period. Global Biogeochemical Cycles, 2000, 14, 559-572.	4.9	270

#	Article	IF	CITATIONS
91	Accretion of interplanetary dust in polar ice. Geophysical Research Letters, 2000, 27, 3145-3148.	4.0	31
92	Abrupt Climate Change at the End of the Last Glacial Period Inferred from Trapped Air in Polar Ice. Science, 1999, 286, 930-934.	12.6	506
93	Atmospheric methane and millennial-scale climate change. Geophysical Monograph Series, 1999, , 165-175.	0.1	31
94	Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature, 1998, 391, 141-146.	27.8	639
95	Cosmogenic nuclide exposure ages along a vertical transect in western Norway: Implications for the height of the Fennoscandian ice sheet. Geology, 1996, 24, 207.	4.4	76
96	Cosmogenic nuclide exposure ages and glacial history of late Quaternary Ross Sea drift in McMurdo Sound, Antarctica. Earth and Planetary Science Letters, 1995, 131, 41-56.	4.4	46
97	Surface-Exposure Chronology Using in Situ Cosmogenic 3He in Antarctic Quartz Sandstone Boulders. Quaternary Research, 1993, 39, 1-10.	1.7	53
98	Chronology of Taylor Glacier Advances in Arena Valley, Antarctica, Using in Situ Cosmogenic 3He and 10Be. Quaternary Research, 1993, 39, 11-23.	1.7	126
99	Effective attenuation lengths of cosmic rays producing ¹⁰ Be AND ²⁶ Al in quartz: Implications for exposure age dating. Geophysical Research Letters, 1992, 19, 369-372.	4.0	125
100	Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochimica Et Cosmochimica Acta, 1991, 55, 2269-2283.	3.9	295