Cécile Voisset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005, 41, 265-274.	3.6	234
2	High Density Lipoproteins Facilitate Hepatitis C Virus Entry through the Scavenger Receptor Class B Type I. Journal of Biological Chemistry, 2005, 280, 7793-7799.	1.6	207
3	Characterization of Functional Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2004, 78, 2994-3002.	1.5	198
4	The Neutralizing Activity of Anti-Hepatitis C Virus Antibodies Is Modulated by Specific Glycans on the E2 Envelope Protein. Journal of Virology, 2007, 81, 8101-8111.	1.5	187
5	High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor Bl. Journal of Biological Chemistry, 2006, 281, 18285-18295.	1.6	186
6	Subcellular Localization of Hepatitis C Virus Structural Proteins in a Cell Culture System That Efficiently Replicates the Virus. Journal of Virology, 2006, 80, 2832-2841.	1.5	178
7	Hepatitis C virus entry: potential receptors and their biological functions. Journal of General Virology, 2006, 87, 1075-1084.	1.3	164
8	Cyanovirin-N Inhibits Hepatitis C Virus Entry by Binding to Envelope Protein Glycans. Journal of Biological Chemistry, 2006, 281, 25177-25183.	1.6	153
9	Human RNA "Rumor―Viruses: the Search for Novel Human Retroviruses in Chronic Disease. Microbiology and Molecular Biology Reviews, 2008, 72, 157-196.	2.9	136
10	Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16269-16274.	3.3	127
11	Antihypertensive Drug Guanabenz Is Active In Vivo against both Yeast and Mammalian Prions. PLoS ONE, 2008, 3, e1981.	1.1	98
12	Chromosomal Distribution and Coding Capacity of the Human Endogenous Retrovirus HERV-W Family. AIDS Research and Human Retroviruses, 2000, 16, 731-740.	0.5	90
13	High-density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry. Journal of General Virology, 2006, 87, 2577-2581.	1.3	88
14	Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology, 2006, 44, 1626-1634.	3.6	83
15	Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cellular Microbiology, 2008, 10, 606-617.	1.1	74
16	Phylogeny of a Novel Family of Human Endogenous Retrovirus Sequences, HERV-W, in Humans and Other Primates. AIDS Research and Human Retroviruses, 1999, 15, 1529-1533.	0.5	65
17	Functional hepatitis C virus envelope glycoproteins. Biology of the Cell, 2004, 96, 413-413.	0.7	65
18	Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs. PLoS ONE, 2008, 3, e2174.	1.1	61

CéCILE VOISSET

#	Article	IF	CITATIONS
19	Antiprion drugs 6â€aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. EMBO Molecular Medicine, 2011, 3, 35-49.	3.3	41
20	The dominant-negative interplay between p53, p63 and p73: A family affair. Oncotarget, 2016, 7, 69549-69564.	0.8	33
21	Novel Endogenous Retrovirus in Rabbits Previously Reported as Human Retrovirus 5. Journal of Virology, 2002, 76, 7094-7102.	1.5	31
22	Pharmacological modulation of the ER stress response ameliorates oculopharyngeal muscular dystrophy. Human Molecular Genetics, 2019, 28, 1694-1708.	1.4	28
23	The Antiprion Compound 6-Aminophenanthridine Inhibits the Protein Folding Activity of the Ribosome by Direct Competition. Journal of Biological Chemistry, 2013, 288, 19081-19089.	1.6	26
24	The Toll-Like Receptor Agonist Imiquimod Is Active against Prions. PLoS ONE, 2013, 8, e72112.	1.1	26
25	Structure–Activity Relationship Study around Guanabenz Identifies Two Derivatives Retaining Antiprion Activity but Having Lost α2-Adrenergic Receptor Agonistic Activity. ACS Chemical Neuroscience, 2014, 5, 1075-1082.	1.7	25
26	The various facets of the proteinâ€folding activity of the ribosome. Biotechnology Journal, 2011, 6, 668-673.	1.8	23
27	Mode of action of the antiprion drugs 6AP and GA on ribosome assisted protein folding. Biochimie, 2011, 93, 1047-1054.	1.3	22
28	Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation. Scientific Reports, 2016, 6, 32117.	1.6	19
29	Tools for the study of ribosomeâ€borne protein folding activity. Biotechnology Journal, 2008, 3, 1033-1040.	1.8	15
30	A yeast-based assay identifies drugs that interfere with Epstein-Barr virus immune evasion. DMM Disease Models and Mechanisms, 2014, 7, 435-44.	1.2	15
31	p53, p63 and p73 in the wonderland of <i>S. cerevisiae</i> . Oncotarget, 2017, 8, 57855-57869.	0.8	15
32	Evaluation of the antiprion activity of 6-aminophenanthridines and related heterocycles. European Journal of Medicinal Chemistry, 2014, 82, 363-371.	2.6	13
33	Synthesis of Conjugates of 6-Aminophenanthridine and Guanabenz, Two Structurally Unrelated Prion Inhibitors, for the Determination of Their Cellular Targets by Affinity Chromatography. Bioconjugate Chemistry, 2010, 21, 279-288.	1.8	12
34	Using yeast to model calcium-related diseases: Example of the Hailey–Hailey disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2315-2321.	1.9	10
35	Specific detection of RT activity in culture supernantants of retrovirus-producing cells, using synthetic DNA as competitor in polymerase enhanced reverse transcriptase assay. Journal of Virological Methods, 2001, 94, 187-193.	1.0	9
36	Rabbit endogenous retrovirus-H encodes a functional protease FN1. Journal of General Virology, 2003, 84, 215-225.	1.3	8

#	Article	IF	CITATIONS
37	Procedure for Identification and Characterization of Drugs Efficient Against Mammalian Prion: From a Yeast-Based Antiprion Drug Screening Assay to In Vivo Mouse Models. Infectious Disorders - Drug Targets, 2009, 9, 31-39.	0.4	8
38	The double life of the ribosome: When its protein folding activity supports prion propagation. Prion, 2017, 11, 89-97.	0.9	8
39	p53, A Victim of the Prion Fashion. Cancers, 2021, 13, 269.	1.7	8
40	Anti-prion Drugs Targeting the Protein Folding Activity of the Ribosome Reduce PABPN1 Aggregation. Neurotherapeutics, 2021, 18, 1137-1150.	2.1	8
41	Identification of 8-Hydroxyquinoline Derivatives That Decrease Cystathionine Beta Synthase (CBS) Activity. International Journal of Molecular Sciences, 2022, 23, 6769.	1.8	2