

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11994740/publications.pdf Version: 2024-02-01

IÃORC POLTE

#	Article	IF	CITATIONS
1	Outstanding hydrogen evolution performance of supported Pt nanoparticles: Incorporation of preformed colloids into mesoporous carbon films. Journal of Catalysis, 2019, 369, 181-189.	3.1	36
2	Soft-templated mesoporous RuPt/C coatings with enhanced activity in the hydrogen evolution reaction. Journal of Catalysis, 2017, 355, 110-119.	3.1	14
3	Unifying Concepts in Room-Temperature CO Oxidation with Gold Catalysts. ACS Catalysis, 2017, 7, 8247-8254.	5.5	33
4	Nafionâ€Free Carbonâ€Supported Electrocatalysts with Superior Hydrogen Evolution Reaction Performance by Soft Templating. ChemElectroChem, 2017, 4, 221-229.	1.7	10
5	Missing Piece of the Mechanism of the Turkevich Method: The Critical Role of Citrate Protonation. Chemistry of Materials, 2016, 28, 4072-4081.	3.2	57
6	Yolk@Shell Nanoarchitectures with Bimetallic Nanocores–Synthesis and Electrocatalytic Applications. ACS Applied Materials & Interfaces, 2016, 8, 28019-28029.	4.0	14
7	Hydrophobic Nanoreactor Softâ€Templating: A Supramolecular Approach to Yolk@Shell Materials. Advanced Functional Materials, 2015, 25, 6228-6240.	7.8	40
8	Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst. Applied Catalysis A: General, 2015, 493, 25-32.	2.2	10
9	Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano, 2015, 9, 7052-7071.	7.3	300
10	Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 2015, 17, 6809-6830.	1.3	507
11	Reliable palladium nanoparticle syntheses in aqueous solution: the importance of understanding precursor chemistry and growth mechanism. CrystEngComm, 2015, 17, 1865-1870.	1.3	49
12	Antireflective Coatings with Adjustable Refractive Index and Porosity Synthesized by Micelle-Templated Deposition of MgF ₂ Sol Particles. ACS Applied Materials & Interfaces, 2014, 6, 19559-19565.	4.0	31
13	Versatile control over size and spacing of small mesopores in metal oxide films and catalytic coatings via templating with hyperbranched core–multishell polymers. Journal of Materials Chemistry A, 2014, 2, 13075-13082.	5.2	11
14	In Situ Determination of Colloidal Gold Concentrations with UV–Vis Spectroscopy: Limitations and Perspectives. Analytical Chemistry, 2014, 86, 11115-11124.	3.2	156
15	Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis. Chemistry of Materials, 2013, 25, 2749-2758.	3.2	47
16	A One-Pot Approach to Mesoporous Metal Oxide Ultrathin Film Electrodes Bearing One Metal Nanoparticle per Pore with Enhanced Electrocatalytic Properties. Chemistry of Materials, 2013, 25, 4645-4652.	3.2	18
17	Size-Controlled Synthesis of Colloidal Silver Nanoparticles Based on Mechanistic Understanding. Chemistry of Materials, 2013, 25, 4679-4689.	3.2	101
18	Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices. Journal of the American Chemical Society, 2012, 134, 18824-18833.	6.6	215

Jörg Polte

#	Article	IF	CITATIONS
19	Supported Mesoporous and Hierarchical Porous Pd/TiO ₂ Catalytic Coatings with Controlled Particle Size and Pore Structure. Chemistry of Materials, 2012, 24, 3828-3838.	3.2	81
20	New Triblock Copolymer Templates, PEOâ€₽Bâ€₽EO, for the Synthesis of Titania Films with Controlled Mesopore Size, Wall Thickness, and Bimodal Porosity. Small, 2012, 8, 298-309.	5.2	96
21	Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano, 2012, 6, 5791-5802.	7.3	204
22	SERS enhancement of gold nanospheres of defined size. Journal of Raman Spectroscopy, 2011, 42, 1736-1742.	1.2	138
23	New insights of the nucleation and growth process of gold nanoparticles via in situ coupling of SAXS and XANES. Journal of Physics: Conference Series, 2010, 247, 012051.	0.3	22
24	Nucleation and Growth of Gold Nanoparticles Studied <i>via in situ</i> Small Angle X-ray Scattering at Millisecond Time Resolution. ACS Nano, 2010, 4, 1076-1082.	7.3	363
25	Mechanism of Gold Nanoparticle Formation in the Classical Citrate Synthesis Method Derived from Coupled In Situ XANES and SAXS Evaluation. Journal of the American Chemical Society, 2010, 132, 1296-1301.	6.6	560
26	Real-Time Monitoring of Copolymer Stabilized Growing Gold Nanoparticles. Langmuir, 2010, 26, 5889-5894.	1.6	32
27	SAXS in combination with a free liquid jet for improved time-resolved in situ studies of the nucleation and growth of nanoparticles. Chemical Communications, 2010, 46, 9209.	2.2	42
28	Mechanistic insights into seeded growth processes of gold nanoparticles. Nanoscale, 2010, 2, 2463.	2.8	49
29	Superparamagnetic Maghemite Nanorods: Analysis by Coupling Field-Flow Fractionation and Small-Angle X-ray Scattering. Analytical Chemistry, 2008, 80, 5905-5911.	3.2	24