Joyce A Goldstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11992689/publications.pdf

Version: 2024-02-01

104 papers

10,118 citations

28274 55 h-index 99 g-index

104 all docs

104 docs citations

104 times ranked 5933 citing authors

#	Article	IF	CITATIONS
1	<i>CYP2C8</i> Is a Novel Target of Peroxisome Proliferator-Activated Receptor <i>$\hat{l}\pm$ in Human Liver. Molecular Pharmacology, 2016, 89, 154-164.</i>	2.3	19
2	Epigenetic Modification of Histone 3 Lysine 27. Journal of Biological Chemistry, 2015, 290, 2264-2278.	3.4	22
3	Regulation of Human CYP2C9 Expression by Electrophilic Stress Involves Activator Protein 1 Activation and DNA Looping. Molecular Pharmacology, 2014, 86, 125-137.	2.3	11
4	The influence of the CYP2C19*10 allele on clopidogrel activation and CYP2C19*2 genotyping. Pharmacogenetics and Genomics, 2014, 24, 381-386.	1.5	13
5	Med25 is required for estrogen receptor alpha (ERα)-mediated regulation of human CYP2C9 expression. Biochemical Pharmacology, 2014, 90, 425-431.	4.4	9
6	RBCK1, an E3 Ubiquitin Ligase, Interacts with and Ubiquinates the Human Pregnane X Receptor. Drug Metabolism and Disposition, 2013, 41, 398-405.	3.3	32
7	PKC phosphorylation of Med25 is critical for Mediator assembly: Implications for HNF4α signaling in drug metabolism. FASEB Journal, 2013, 27, 1180.1.	0.5	O
8	Associations of ABCB1 and IL-10 Genetic Polymorphisms With Sirolimus-Induced Dyslipidemia in Renal Transplant Recipients. Transplantation, 2012, 94, 971-977.	1.0	10
9	Comparison of CYP3A4 and CYP3A5: The Effects of Cytochrome b5 and NADPH-cytochrome P450 Reductase on Testosterone Hydroxylation Activities. Drug Metabolism and Pharmacokinetics, 2012, 27, 663-667.	2.2	20
10	Human CYP2C8 Is Post-Transcriptionally Regulated by MicroRNAs 103 and 107 in Human Liver. Molecular Pharmacology, 2012, 82, 529-540.	2.3	70
11	Cyclophosphamide and 4â€hydroxycyclophosphamide pharmacokinetics in patients with glomerulonephritis secondary to lupus and small vessel vasculitis. British Journal of Clinical Pharmacology, 2012, 74, 445-455.	2.4	48
12	NCOA6 differentially regulates the expression of the CYP2C9 and CYP3A4 genes. Pharmacological Research, 2011, 63, 405-413.	7.1	8
13	Med25 Is Required for RNA Polymerase II Recruitment to Specific Promoters, Thus Regulating Xenobiotic and Lipid Metabolism in Human Liver. Molecular and Cellular Biology, 2011, 31, 466-481.	2.3	60
14	Associations of ABCB1 3435C>T and IL-10-1082G>A Polymorphisms With Long-Term Sirolimus Dose Requirements in Renal Transplant Patients. Transplantation, 2011, 92, 1342-1347.	1.0	27
15	MicroRNAs 103 and 107 regulate the expression of Human Cytochrome P450 2C8. FASEB Journal, 2011, 25, 1014.1.	0.5	O
16	The Nuclear Receptors Constitutive Active/Androstane Receptor and Pregnane X Receptor Activate the Cyp2c55Gene in Mouse Liver. Drug Metabolism and Disposition, 2010, 38, 1177-1182.	3.3	14
17	Hepatocyte Nuclear Factor 4α Regulates Rifampicin-Mediated Induction of <i>CYP2C</i> Genes in Primary Cultures of Human Hepatocytes. Drug Metabolism and Disposition, 2010, 38, 591-599.	3.3	35
18	Kidney Function Influences Warfarin Responsiveness and Hemorrhagic Complications. Journal of the American Society of Nephrology: JASN, 2009, 20, 912-921.	6.1	256

#	Article	IF	CITATIONS
19	Identification of HumanCYP2C8as a Retinoid-Related Orphan Nuclear Receptor Target Gene. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 192-201.	2.5	28
20	CYP2C9 genotype and pharmacodynamic responses to losartan in patients with primary and secondary kidney diseases. European Journal of Clinical Pharmacology, 2009, 65, 947-953.	1.9	26
21	The Transcriptional Regulation of the Human CYP2C Genes. Current Drug Metabolism, 2009, 10, 567-578.	1.2	112
22	Midazolam Metabolism in Cytochrome P450 3A Knockout Mice Can Be Attributed to Up-Regulated CYP2C Enzymes. Molecular Pharmacology, 2008, 73, 1029-1036.	2.3	106
23	Nuclear Receptor Coactivator 6 Mediates the Synergistic Activation of Human Cytochrome P-450 2C9 by the Constitutive Androstane Receptor and Hepatic Nuclear Factor-4α. Molecular Pharmacology, 2008, 74, 913-923.	2.3	32
24	Influence of <i>CYP2C9</i> and <i>VKORC1</i> on warfarin dose, anticoagulation attainment and maintenance among Europeanâ€"Americans and Africanâ€"Americans. Pharmacogenomics, 2008, 9, 511-526.	1.3	142
25	A New CYP3A5 Variant, CYP3A5*11, Is Shown to Be Defective in Nifedipine Metabolism in a Recombinant cDNA Expression System. Drug Metabolism and Disposition, 2007, 35, 67-71.	3.3	15
26	Detection of Human CYP2C8, CYP2C9, and CYP2J2 in Cardiovascular Tissues. Drug Metabolism and Disposition, 2007, 35, 682-688.	3.3	140
27	The discovery of new coding alleles of human CYP26A1 that are potentially defective in the metabolism of all-trans retinoic acid and their assessment in a recombinant cDNA expression system. Pharmacogenetics and Genomics, 2007, 17, 169-180.	1.5	20
28	Reduced Methylprednisolone Clearance Causing Prolonged Pharmacodynamics in a Healthy Subject Was Not Associated WithCYP3A5*3Allele or a Change in Diet Composition. Journal of Clinical Pharmacology, 2006, 46, 515-526.	2.0	10
29	Phenytoin Induction of the Cyp2c37 Gene Is Mediated by the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2006, 34, 2003-2010.	3.3	44
30	Detection of human CYP2Cs in heart, aorta and coronary tissues. FASEB Journal, 2006, 20, A1111.	0.5	2
31	The Nuclear Receptors Constitutive Androstane Receptor and Pregnane X Receptor Cross-Talk with Hepatic Nuclear Factor $4\hat{l}\pm$ to Synergistically Activate the Human CYP2C9 Promoter. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1125-1133.	2.5	104
32	Human CYP2C8 Is Transcriptionally Regulated by the Nuclear Receptors Constitutive Androstane Receptor, Pregnane X Receptor, Glucocorticoid Receptor, and Hepatic Nuclear Factor $4\hat{l}\pm$. Molecular Pharmacology, 2005, 68, 747-757.	2.3	185
33	Functional Characterization of Novel Allelic Variants of CYP2C9 Recently Discovered in Southeast Asians. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1085-1090.	2.5	77
34	Recombinant CYP3A4*17 Is Defective in Metabolizing the Hypertensive Drug Nifedipine, and the CYP3A4*17 Allele May Occur on the Same Chromosome as CYP3A5*3, Representing a New Putative Defective CYP3A Haplotype. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 302-309.	2.5	65
35	Functionally defective or alteredCYP3A4andCYP3A5single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics, 2005, 6, 357-371.	1.3	87
36	The Constitutive Active/Androstane Receptor Regulates Phenytoin Induction of Cyp2c29. Molecular Pharmacology, 2004, 65, 1397-1404.	2.3	50

#	Article	IF	Citations
37	Cloning, Expression, and Characterization of Three New Mouse Cytochrome P450 Enzymes and Partial Characterization of Their Fatty Acid Oxidation Activities. Molecular Pharmacology, 2004, 65, 1148-1158.	2.3	68
38	Induction of Human CYP2C9 by Rifampicin, Hyperforin, and Phenobarbital Is Mediated by the Pregnane X Receptor. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 495-501.	2.5	206
39	CYP2C44, a New Murine CYP2C That Metabolizes Arachidonic Acid to Unique Stereospecific Products. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 845-854.	2.5	71
40	Mouse Liver CYP2C39 Is a Novel Retinoic Acid 4-Hydroxylase. Journal of Biological Chemistry, 2004, 279, 3434-3438.	3.4	58
41	CYP2C9 Genetic Polymorphisms and Warfarin. Clinical and Applied Thrombosis/Hemostasis, 2004, 10, 149-154.	1.7	15
42	Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics and Genomics, 2004, 14, 527-537.	5 . 7	137
43	Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. European Journal of Clinical Pharmacology, 2003, 58, 791-794.	1.9	58
44	Losartan and E3174 Pharmacokinetics in Cytochrome P4502C9*1/*1,*1/*2, and*1/*3Individuals. Pharmacotherapy, 2003, 23, 720-725.	2.6	33
45	Identification of Constitutive Androstane Receptor and Glucocorticoid Receptor Binding Sites in the CYP2C19 Promoter. Molecular Pharmacology, 2003, 64, 316-324.	2.3	160
46	Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups*. Pharmacogenetics and Genomics, 2003, 13, 461-472.	5.7	142
47	Tolbutamide, Flurbiprofen, and Losartan as Probes of CYP2C9 Activity in Humans. Journal of Clinical Pharmacology, 2003, 43, 84-91.	2.0	86
48	Regulation of HumanCYP2C9by the Constitutive Androstane Receptor: Discovery of a New Distal Binding Site. Molecular Pharmacology, 2002, 62, 737-746.	2.3	149
49	Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics and Genomics, 2002, 12, 251-263.	5.7	646
50	Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics and Genomics, 2002, 12, 703-711.	5.7	123
51	Analysis of the CYP2C19 polymorphism in a North-eastern Thai population. Pharmacogenetics and Genomics, 2002, 12, 221-225.	5.7	50
52	CYP2C9 polymorphisms and CYP2C9*2 genotyping primers. British Journal of Clinical Pharmacology, 2002, 53, 409-410.	2.4	6
53	Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C9*1 heterozygotes. Clinical Pharmacology and Therapeutics, 2002, 72, 562-571.	4.7	50
54	Evaluation of potential losartan-phenytoin drug interactions in healthy volunteers*. Clinical Pharmacology and Therapeutics, 2002, 72, 238-246.	4.7	47

#	Article	IF	Citations
55	Ticlopidine as a Selective Mechanism-Based Inhibitor of Human Cytochrome P450 2C19â€. Biochemistry, 2001, 40, 12112-12122.	2.5	165
56	Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics and Genomics, 2001, 11, 597-607.	5.7	445
57	Identification of a null allele of CYP2C9 in an African–American exhibiting toxicity to phenytoin. Pharmacogenetics and Genomics, 2001, 11, 803-808.	5.7	246
58	Identification of Human CYP2C19 Residues that Confer S-Mephenytoin 4â€~-Hydroxylation Activity to CYP2C9. Biochemistry, 2001, 40, 1937-1944.	2.5	49
59	Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. British Journal of Clinical Pharmacology, 2001, 52, 349-355.	2.4	530
60	CYP2C40, a Unique Arachidonic Acid 16-Hydroxylase, Is the Major CYP2C in Murine Intestinal Tract. Molecular Pharmacology, 2000, 58, 279-287.	2.3	29
61	Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics and Genomics, 2000, 10, 267-270.	5.7	52
62	Human CYP2C-mediated stereoselective phenytoin hydroxylation in Japanese: difference in chiral preference of CYP2C9 and CYP2C19. Biochemical Pharmacology, 1999, 57, 1297-1303.	4.4	48
63	Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. Journal of Biochemical and Molecular Toxicology, 1999, 13, 289-295.	3.0	160
64	Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics and Genomics, 1999, 9, 71-80.	5.7	166
65	Comparative Studies on the Catalytic Roles of Cytochrome P450 2C9 and Its Cys- and Leu-Variants in the Oxidation of Warfarin, Flurbiprofen, and Diclofenac by Human Liver Microsomes. Biochemical Pharmacology, 1998, 56, 243-251.	4.4	153
66	Cloning and Expression of Murine CYP2Cs and Their Ability to Metabolize Arachidonic Acid. Archives of Biochemistry and Biophysics, 1998, 357, 45-57.	3.0	103
67	Identification of Residues 286 and 289 as Critical for Conferring Substrate Specificity of Human CYP2C9 for Diclofenac and Ibuprofen. Archives of Biochemistry and Biophysics, 1998, 357, 240-248.	3.0	58
68	An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics and Genomics, 1998, 8, 129-136.	5.7	95
69	Genetic Polymorphisms in Human Drug Metabolic Enzymes. Toxicological Sciences, 1997, 40, 1-14.	3.1	1
70	Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics and Genomics, 1997, 7, 59-64.	5.7	314
71	Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359allele as low-Kmcatalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics and Genomics, 1997, 7, 211-221.	5.7	136
72	Genetic Polymorphisms in Human Drug Metabolic Enzymes,. Fundamental and Applied Toxicology, 1997, 40, 1-14.	1,8	48

#	Article	IF	CITATIONS
73	The role of the CFP2C9-Leu 359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics and Genomics, 1996, 6, 341-349.	5.7	600
74	Identification of Residues 99, 220, and 221 of Human Cytochrome P450 2C19 as Key Determinants of Omeprazole Hydroxylase Activity. Journal of Biological Chemistry, 1996, 271, 12496-12501.	3.4	77
75	[23] Genetic tests which identify the principal defects in CYP2C19 responsible for the polymorphism in mephenytoin metabolism. Methods in Enzymology, 1996, 272, 210-218.	1.0	99
76	A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics and Genomics, 1995, 5, 312-317.	5.7	80
77	The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: A population study*. Clinical Pharmacology and Therapeutics, 1995, 57, 662-669.	4.7	149
78	Genetic analysis of the S-mephenytoin polymorphism in a chinese population*. Clinical Pharmacology and Therapeutics, 1995, 58, 404-411.	4.7	126
79	Transcriptional Regulation of Human CYP2C Genes: Functional Comparison of CYP2C9 and CYP2C18 Promoter Regions. Biochemistry, 1995, 34, 8028-8036.	2.5	77
80	Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics and Genomics, 1994, 4, 285-300.	5.7	484
81	Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry, 1991, 30, 3247-3255.	2.5	227
82	Characterization of a cDNA for the unexpressed form of cytochrome P-450g from the (-g) rat and differentiation of its mRNA from that of the (+g) phenotype using specific oligoprobes. Biochemistry, 1990, 29, 713-718.	2.5	9
83	Characterization of a cDNA for rat P-450g, a highly polymorphic, male-specific cytochrome in the P-450IIC subfamily. Biochemistry, 1989, 28, 5832-5839.	2.5	30
84	Interaction of hexachlorobenzene with the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro and in vivo,. Archives of Biochemistry and Biophysics, 1989, 270, 344-355.	3.0	73
85	Mechanism of action and structure-activity relationships for the chlorinated dibenzo-p-dioxins and related compounds., 1989,, 239-293.		94
86	Increases in cytochrome P-450 mediated $17\hat{l}^2$ -estradiol 2-hydroxylase activity in rat liver microsomes after both acute administration and subchronic administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin in a two-stage hepatocarcinogenesis model. Carcinogenesis, 1988, 9, 1935-1941.	2.8	69
87	Studies on the Role of the Ah Receptor in Hexachlorobenzene-Induced Porphyria. Annals of the New York Academy of Sciences, 1987, 514, 333-334.	3.8	0
88	Phenotypic differences in expression of cytochrome P-450g but not its mRNA in outbred male Sprague-Dawley rats. Archives of Biochemistry and Biophysics, 1987, 253, 13-25.	3.0	50
89	Induction of cytochrome P-450 isozymes by hexachlorobenzene in rats and aromatic hydrocarbon (Ah)—Responsive mice. Journal of Biochemical Toxicology, 1986, 1, 95-107.	0.4	37
90	Induction of specific cytochrome P-450 isozymes by methylenedioxyphenyl compounds and antagonism by 3-methylcholanthrene. Archives of Biochemistry and Biophysics, 1985, 243, 408-419.	3.0	28

#	ARTICLE	IF	CITATIONS
91	Differential metabolism of acetanilide versus ethoxycoumarin and benzo[a]pyrene by two 3-methylcholanthrene-inducible forms of rat liver cytochrome P-450. Archives of Biochemistry and Biophysics, 1983, 226, 548-557.	3.0	20
92	Specificity of rat liver cytochrome P-450 isozymes in the mutagenic activation of benzo[a]pyrene, aromatic amines and aflatoxin B1. Carcinogenesis, 1983, 4, 93-96.	2.8	48
93	Induction of porphyria in the rat by chronic versus acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochemical Pharmacology, 1982, 31, 1607-1613.	4.4	43
94	Marked differences in the inductive effects of two symmetrical hexachlorobiphenyls and the corresponding unsymmetrical isomer on hepatic monooxygenases. Biochemical Pharmacology, 1981, 30, 1008-1011.	4.4	8
95	A comparison of a commercial polybrominated biphenyl mixture, 2,4,5,2',4',5'-hexabromobiphenyl and 2,3,6,7-tetrabromonaphthalene as inducers of liver microsomal drug-metabolizing enzymes. Biochemical Pharmacology, 1979, 28, 2947-2956.	4.4	31
96	THE STRUCTURE-ACTIVITY RELATIONSHIPS OF HALOGENATED BIPHENYLS AS ENZYME INDUCERS. Annals of the New York Academy of Sciences, 1979, 320, 164-178.	3.8	70
97	THE STRUCTURE-ACTIVITY RELATIONSHIPS OF HALOGENATED BIPHENYLS AS ENZYME INDUCERS. Annals of the New York Academy of Sciences, 1979, 320, 164-178.	3.8	82
98	Effects of pentachlorophenol on hepatic drug-metabolizing enzymes and porphyria related to contamination with chlorinated dibenzo-p-dioxins and dibenzofurans. Biochemical Pharmacology, 1977, 26, 1549-1557.	4.4	100
99	Separation of pure polychlorinated biphenyl isomers into two types of inducers on the basis of induction of cytochrome P-450 or P-448. Chemico-Biological Interactions, 1977, 17, 69-87.	4.0	247
100	Toxicological assessment of hexachlorobiphenyl isomers and 2,3,7,8-tetrachlorodibenzofuran in chicks. Toxicology and Applied Pharmacology, 1976, 36, 81-92.	2.8	86
101	A comparative study of two polychlorinated biphenyl mixtures (Aroclors 1242 and 1016) containing 42% chlorine on induction of hepatic porphyria and drug metabolizing enzymes. Toxicology and Applied Pharmacology, 1975, 32, 461-473.	2.8	61
102	Experimental hepatic porphyria induced by polychlorinated biphenyls. Toxicology and Applied Pharmacology, 1974, 27, 437-448.	2.8	92
103	Effects of purified and technical piperonyl butoxide on drug-metabolizing enzymes and ultrastructure of rat liver. Toxicology and Applied Pharmacology, 1973, 26, 444-458.	2.8	49
104	Enhanced biliary excretion of thyroxine glucuronide in rats pretreated with benzpyrene. Biochemical Pharmacology, 1968, 17, 1049-1065.	4.4	70