
Dileep Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11992126/publications.pdf Version: 2024-02-01

DILEED SINCH

#	Article	IF	CITATIONS
1	Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics, 2009, 106, .	1.1	707
2	Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology, 2010, 21, 215703.	1.3	220
3	Nanofluids for heat transfer: an engineering approach. Nanoscale Research Letters, 2011, 6, 182.	3.1	158
4	Heat transfer to a silicon carbide/water nanofluid. International Journal of Heat and Mass Transfer, 2009, 52, 3606-3612.	2.5	156
5	Phase change material with graphite foam for applications in high-temperature latent heat storage systems of concentrated solar power plants. Renewable Energy, 2014, 69, 134-146.	4.3	143
6	Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids. Journal of Applied Physics, 2011, 109, .	1.1	140
7	Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. Journal of Colloid and Interface Science, 2011, 364, 71-79.	5.0	105
8	Comparative review of turbulent heat transfer of nanofluids. International Journal of Heat and Mass Transfer, 2012, 55, 5380-5396.	2.5	104
9	Fracture Toughness of Polycrystalline Ceramics in Combined Mode I and Mode II Loading. Journal of the American Ceramic Society, 1989, 72, 78-84.	1.9	96
10	Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. Journal of Nanoparticle Research, 2008, 10, 1109-1114.	0.8	92
11	Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage. International Journal of Energy Research, 2014, 38, 51-59.	2.2	74
12	Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power. Solar Energy, 2014, 103, 438-447.	2.9	69
13	Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system. Renewable Energy, 2016, 94, 660-667.	4.3	69
14	Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power. Solar Energy, 2014, 105, 468-478.	2.9	63
15	Pumping power of nanofluids in a flowing system. Journal of Nanoparticle Research, 2011, 13, 931-937.	0.8	55
16	High temperature zirconia oxygen sensor with sealed metal/metal oxide internal reference. Sensors and Actuators B: Chemical, 2007, 124, 192-201.	4.0	53
17	Development and prototype testing of MgCl2/graphite foam latent heat thermal energy storage system. Solar Energy, 2018, 159, 270-282.	2.9	49
18	Analysis of a graphite foam–NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power. Solar Energy, 2015, 118, 232-242.	2.9	46

DILEEP SINGH

#	Article	IF	CITATIONS
19	3D quantitative analysis of graphite morphology in high strength cast iron by high-energy X-ray tomography. Scripta Materialia, 2015, 106, 5-8.	2.6	44
20	Binder jetting additive manufacturing of silicon carbide ceramics: Development of bimodal powder feedstocks by modeling and experimental methods. Ceramics International, 2020, 46, 19701-19707.	2.3	42
21	Investigations of heat transfer of copper-in-Therminol 59 nanofluids. International Journal of Heat and Mass Transfer, 2013, 64, 1196-1204.	2.5	35
22	Mechanical Behavior of SiC(f)/SiC Composites and Correlation to in situ Fiber Strength at Room and Elevated Temperatures. Journal of the American Ceramic Society, 1996, 79, 591-596.	1.9	34
23	Use of encapsulated zinc particles in a eutectic chloride salt to enhance thermal energy storage capacity for concentrated solar power. Renewable Energy, 2015, 80, 508-516.	4.3	34
24	Mechanisms and Models of Effective Thermal Conductivities of Nanofluids. Journal of Nanoscience and Nanotechnology, 2010, 10, 4824-4849.	0.9	24
25	Application of X-ray computed tomography for the characterization of graphite morphology in compact-graphite iron. Materials Characterization, 2018, 141, 442-449.	1.9	20
26	Chemically bonded phosphate ceramics for lowâ€level mixedâ€waste stabilization. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1997, 32, 527-541.	0.1	19
27	One piece ceramic heat exchanger for concentrating solar power electric plants. Renewable Energy, 2020, 160, 1308-1315.	4.3	18
28	Subcritical Crack Growth in Soda-Lime Glass in Combined Mode I and Mode II Loading. Journal of the American Ceramic Society, 1990, 73, 3597-3606.	1.9	16
29	Subcooled flow boiling of ethylene glycol/water mixtures in a bottom-heated tube. International Journal of Heat and Mass Transfer, 2014, 72, 637-645.	2.5	15
30	Effect-of Processing Varcables on Interfacial Properties of an SiG-Fiber-Reinforced Reaction-Bonded Si3N4 Matrix Composite. Journal of the American Ceramic Society, 1994, 77, 2561-2568.	1.9	13
31	Defect and satellite characteristics of additive manufacturing metal powders. Advanced Powder Technology, 2022, 33, 103486.	2.0	12
32	Compact electrochemical bifunctional NOx/O2 sensor with metal/metal oxide internal reference electrode for high temperature applications. Sensors and Actuators B: Chemical, 2008, 131, 448-454.	4.0	11
33	Development of a silicon carbide ceramic based counter-flow heat exchanger by binder jetting and liquid silicon infiltration for concentrating solar power. Ceramics International, 2022, 48, 22975-22984.	2.3	11
34	Development of Zirconium/Magnesium Phosphate Composites for Immobilization of Fission Products. Journal of the American Ceramic Society, 1999, 82, 43-49.	1.9	10
35	Depth-resolved residual strain in MoNâ^•Mo nanocrystalline films. Applied Physics Letters, 2006, 89, 172104.	1.5	9
36	Experimental investigation of subcooled flow boiling of a 50/50 ethylene glycol/water mixture in finned rectangular aluminum channels. Experimental Heat Transfer, 2018, 31, 482-494.	2.3	9

DILEEP SINGH

#	Article	IF	CITATIONS
37	Additive manufacturing and testing of a ceramic heat exchanger for high-temperature and high-pressure applications for concentrating solar power. Solar Energy, 2022, 236, 654-665.	2.9	9
38	Development of nanosized lanthanum strontium aluminum manganite as electrodes for potentiometric oxygen sensor. Sensors and Actuators B: Chemical, 2014, 203, 670-676.	4.0	8
39	An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system. AIP Conference Proceedings, 2016, , .	0.3	6
40	Functionalized fewâ€layered graphene nanoplatelets for superior thermal management in heat transfer nanofluids. International Journal of Applied Ceramic Technology, 2022, 19, 803-812.	1.1	6
41	Investigation of Corrosion of 304 Stainless, Inconel 625, and Haynes 230 in a Chloride-Salt-Based Thermal Storage Medium. Journal of Materials Engineering and Performance, 2019, 28, 7379-7389.	1.2	5
42	Analysis of pushout tests on an SiC-fiber-reinforced reaction-bonded Si3N4 composite. Composites Part B: Engineering, 1993, 3, 287-312.	0.6	4
43	High-Energy X-ray Tomographic Analysis of Precursor Metal Powders (Ti-6Al-4V) Used for Additive Manufacturing. Journal of Materials Engineering and Performance, 2021, 30, 610-616.	1.2	3
44	Solid-Particle Erosion of an Al2O3-SiC-TiC Composite. Ceramic Engineering and Science Proceedings, 0, , 239-246.	0.1	3
45	Subcooled Boiling Heat Transfer for Cooling of Power Electronics in Hybrid Electric Vehicles. Journal of Electronic Packaging, Transactions of the ASME, 2015, 137, .	1.2	2
46	Depth-dependent defect and residual stress distribution in magnetron sputtered MoN:Cu nanocomposite films by x-ray microdiffraction. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	1
47	Reaction Joining of Aluminumâ€Doped Lanthanum Strontium Manganese Oxide to Yttriaâ€Stabilized Tetragonal Zirconia for Gas Sensor Applications. International Journal of Applied Ceramic Technology, 2012, 9, 725-732.	1.1	1
48	Influence of Fiber Lay-Up Sequence on Mechanical Properties of SiC(f)/SiC Composites. , 0, , 98-109.		1
49	Pumping Power of 50/50 Mixtures of Ethylene Glycol/Water Containing SiC Nanoparticles. Ceramic Engineering and Science Proceedings, 0, , 147-152.	0.1	0
50	Effect of Fiber Architecture on Mechanical Behavior of SiC(f)/SiC Composites. Ceramic Engineering and Science Proceedings, 0, , 697-708.	0.1	0