Arie Reijerkerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11992105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2997-E3006.	7.1	90
2	Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB Journal, 2016, 30, 2662-2672.	0.5	49
3	Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo. Drug Discovery Today: Technologies, 2016, 20, 59-69.	4.0	59
4	Recent Advances and Trends in the Brain Delivery of Small Molecule Based Cancer Therapies. , 2015, , 463-482.		0
5	Systemic Treatment With Glutathione PEGylated Liposomal Methylprednisolone (2B3-201) Improves Therapeutic Efficacy in a Model of Ocular Inflammation. , 2014, 55, 2788.		23
6	P-glycoprotein regulates trafficking of CD8+ T cells to the brain parenchyma. Acta Neuropathologica, 2014, 127, 699-711.	7.7	40
7	Disturbed function of the blood–cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathologica, 2014, 128, 267-277.	7.7	83
8	Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats. Journal of Drug Targeting, 2014, 22, 460-467.	4.4	118
9	Astrocyte-derived retinoic acid: a novel regulator of blood–brain barrier function in multiple sclerosis. Acta Neuropathologica, 2014, 128, 691-703.	7.7	100
10	Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia, 2014, 62, 1125-1141.	4.9	88
11	Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 274, 96-101.	2.3	40
12	MicroRNAâ€155 negatively affects blood–brain barrier function during neuroinflammation. FASEB Journal, 2014, 28, 2551-2565.	0.5	220
13	Disease Influence on BBB Transport in Inflammatory Disorders. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 573-589.	0.6	1
14	MicroRNAs Regulate Human Brain Endothelial Cell-Barrier Function in Inflammation: Implications for Multiple Sclerosis. Journal of Neuroscience, 2013, 33, 6857-6863.	3.6	122
15	Reduced expression of PGC-11± partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathologica, 2013, 125, 231-243.	7.7	114
16	Retinoic Acid Induces Blood–Brain Barrier Development. Journal of Neuroscience, 2013, 33, 1660-1671.	3.6	171
17	Roles for HBâ€EGF and CD9 in multiple sclerosis. Glia, 2013, 61, 1890-1905.	4.9	25
18	Mycâ€associated zinc finger protein (MAZ) is regulated by miRâ€125b and mediates VEGFâ€induced angiogenesis in glioblastoma. FASEB Journal, 2012, 26, 2639-2647.	0.5	98

Arie Reijerkerk

#	Article	IF	CITATIONS
19	Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathologica, 2012, 124, 397-410.	7.7	101
20	Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier. Journal of Neuroinflammation, 2012, 9, 133.	7.2	102
21	Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. Journal of Controlled Release, 2012, 164, 364-369.	9.9	151
22	Brain endothelial barrier passage by monocytes is controlled by the endothelin system. Journal of Neurochemistry, 2012, 121, 730-737.	3.9	53
23	Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain, 2011, 134, 555-570.	7.6	77
24	Sphingosine 1â€phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 2010, 58, 1465-1476.	4.9	181
25	The NR1 subunit of NMDA receptor regulates monocyte transmigration through the brain endothelial cell barrier. Journal of Neurochemistry, 2010, 113, 447-453.	3.9	79
26	T lymphocytes impair P-glycoprotein function during neuroinflammation. Journal of Autoimmunity, 2010, 34, 416-425.	6.5	59
27	P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation. PLoS ONE, 2009, 4, e8212.	2.5	56
28	Protective effects of peroxiredoxin-1 at the injured blood–brain barrier. Free Radical Biology and Medicine, 2008, 45, 256-264.	2.9	32
29	SOX-18 controls endothelial-specific claudin-5 gene expression and barrier function. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H891-H900.	3.2	77
30	Tissue-Type Plasminogen Activator Is a Regulator of Monocyte Diapedesis through the Brain Endothelial Barrier. Journal of Immunology, 2008, 181, 3567-3574.	0.8	65
31	Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB Journal, 2007, 21, 3666-3676.	0.5	294
32	Diapedesis of monocytes is associated with MMP―mediated occludin disappearance in brain endothelial cells. FASEB Journal, 2006, 20, 2550-2552.	0.5	118
33	Lipoic Acid Affects Cellular Migration into the Central Nervous System and Stabilizes Blood-Brain Barrier Integrity. Journal of Immunology, 2006, 177, 2630-2637.	0.8	144
34	Do antiangiogenic protein fragments have amyloid properties?. Blood, 2004, 104, 1601-1605.	1.4	25
35	The Role of the Fibrinolytic System in Corneal Angiogenesis. Angiogenesis, 2003, 6, 311-316.	7.2	15
36	Recombinant endostatin forms amyloid fibrils that bind and are cytotoxic to murine neuroblastoma cells in vitro. FEBS Letters, 2003, 539, 149-155.	2.8	50

#	Article	IF	CITATIONS
37	Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Molecular Cancer Research, 2003, 1, 561-8.	3.4	30
38	Tissue-Type Plasminogen Activator Is a Multiligand Cross-Î ² Structure Receptor. Current Biology, 2002, 12, 1833-1839.	3.9	102