Oliver Bossdorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters, 2006, 9, 981-993.	3.0	1,063
2	Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 2005, 144, 1-11.	0.9	875
3	Epigenetics for ecologists. Ecology Letters, 2008, 11, 106-115.	3.0	804
4	Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology, 2010, 11, 473-485.	1.2	649
5	The Scale of Population Structure in Arabidopsis thaliana. PLoS Genetics, 2010, 6, e1000843.	1.5	338
6	Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 2013, 197, 314-322.	3.5	330
7	Ecological plant epigenetics: Evidence from model and nonâ€model species, and the way forward. Ecology Letters, 2017, 20, 1576-1590.	3.0	279
8	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
9	Allelopathic inhibition of germination by <i>Alliaria petiolata</i> (Brassicaceae). American Journal of Botany, 2004, 91, 285-288.	0.8	237
10	Do invasive species perform better in their new ranges?. Ecology, 2013, 94, 985-994.	1.5	210
11	Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molecular Ecology, 2005, 14, 1697-1706.	2.0	189
12	Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evolutionary Ecology, 2010, 24, 541-553.	0.5	187
13	What Role Does Heritable Epigenetic Variation Play in Phenotypic Evolution?. BioScience, 2010, 60, 232-237.	2.2	175
14	Epigenetic diversity increases the productivity and stability of plant populations. Nature Communications, 2013, 4, 2875.	5.8	163
15	Reduced competitive ability in an invasive plant. Ecology Letters, 2004, 7, 346-353.	3.0	152
16	Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 2019, 573, 126-129.	13.7	148
17	Using herbaria to study global environmental change. New Phytologist, 2019, 221, 110-122.	3.5	140
18	Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing	0.8	139

strategies for ecological restoration. Conservation Genetics, 2019, 20, 7-17.

#	Article	IF	CITATIONS
19	The Ecology and Evolution of Alien Plants. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 25-47.	3.8	138
20	Environmental variability promotes plant invasion. Nature Communications, 2013, 4, 1604.	5.8	135
21	Invasive knotweed affects native plants through allelopathy. American Journal of Botany, 2011, 98, 38-43.	0.8	133
22	Understanding natural epigenetic variation. New Phytologist, 2010, 187, 562-564.	3.5	118
23	Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism. PLoS ONE, 2011, 6, e18927.	1.1	118
24	The snow and the willows: earlier spring snowmelt reduces performance in the lowâ€lying alpine shrub <i>Salix herbacea</i> . Journal of Ecology, 2016, 104, 1041-1050.	1.9	110
25	Selection of preadapted populations allowed <i>Senecio inaequidens</i> to invade Central Europe. Diversity and Distributions, 2008, 14, 676-685.	1.9	103
26	Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 2014, 113, 233-239.	1.2	101
27	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	1.1	101
28	Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow <i>Salix herbacea</i> from different elevations and microhabitats. Ecology and Evolution, 2016, 6, 3940-3952.	0.8	98
29	Genetic differentiation and regional adaptation among seed origins used for grassland restoration: lessons from a multispecies transplant experiment. Journal of Applied Ecology, 2017, 54, 127-136.	1.9	97
30	What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 2014, 15, 305-315.	1.2	95
31	Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology, 2017, 54, 116-126.	1.9	95
32	Spatial pattern formation in semi-arid shrubland: a priori predicted versus observed pattern characteristics. Plant Ecology, 2004, 173, 271-282.	0.7	87
33	Climate change will increase the naturalization risk from garden plants in Europe. Global Ecology and Biogeography, 2017, 26, 43-53.	2.7	87
34	Palatability and tolerance to simulated herbivory in native and introduced populations of <i>Alliaria petiolata</i> (Brassicaceae). American Journal of Botany, 2004, 91, 856-862.	0.8	83
35	The more the merrier: Multi-species experiments in ecology. Basic and Applied Ecology, 2014, 15, 1-9.	1.2	83
36	Adaptive transgenerational plasticity in the perennial <i>Plantago lanceolata</i> . Oikos, 2014, 123, 41-46.	1.2	75

#	Article	IF	CITATIONS
37	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	1.5	75
38	Epigenetic variation in plant responses to defence hormones. Annals of Botany, 2012, 110, 1423-1428.	1.4	74
39	Longitudinal trends in climate drive flowering time clines in North American <i>Arabidopsis thaliana</i> . Ecology and Evolution, 2012, 2, 1162-1180.	0.8	65
40	Structure, stability and ecological significance of natural epigenetic variation: a largeâ€scale survey in <i>Plantago lanceolata</i> . New Phytologist, 2019, 221, 1585-1596.	3.5	61
41	Epigenetics and the success of invasive plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200117.	1.8	61
42	Understanding the evolutionary potential of epigenetic variation: a comparison of heritable phenotypic variation in epiRILs, RILs, and natural ecotypes of Arabidopsis thaliana. Heredity, 2018, 121, 257-265.	1.2	60
43	Hybridization increases invasive knotweed success. Evolutionary Applications, 2014, 7, 413-420.	1.5	57
44	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	4.2	54
45	Functional trait differences and trait plasticity mediate biotic resistance to potential plant invaders. Journal of Ecology, 2018, 106, 1607-1620.	1.9	50
46	Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AoB PLANTS, 2018, 10, ply043.	1.2	50
47	Transient Stability of Epigenetic Population Differentiation in a Clonal Invader. Frontiers in Plant Science, 2018, 9, 1851.	1.7	49
48	European ornamental garden flora as an invasion debt under climate change. Journal of Applied Ecology, 2018, 55, 2386-2395.	1.9	45
49	Genotype and maternal environment affect belowground interactions between <i>Arabidopsis thaliana</i> and its competitors. Oikos, 2009, 118, 1541-1551.	1.2	38
50	Rapid evolution in native plants cultivated for ecological restoration: not a general pattern. Plant Biology, 2019, 21, 551-558.	1.8	38
51	Help from under ground: soil biota facilitate knotweed invasion. Ecosphere, 2013, 4, 1-11.	1.0	36
52	Are local plants the best for ecosystem restoration? It depends on how you analyze the data. Ecology and Evolution, 2017, 7, 10683-10689.	0.8	35
53	Less is more! Rapid increase in plant species richness after reduced mowing in urban grasslands. Basic and Applied Ecology, 2020, 42, 47-53.	1.2	34
54	Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Global Change Biology, 2020, 26, 6511-6522.	4.2	28

#	Article	IF	CITATIONS
55	Climate-neutral ecology conferences: just do it!. Trends in Ecology and Evolution, 2010, 25, 61.	4.2	27
56	A truly ecological epigenetics study. Molecular Ecology, 2011, 20, 1572-1574.	2.0	26
57	Testing for allelopathy in invasive plants: it all depends on the substrate!. Biological Invasions, 2016, 18, 2975-2982.	1.2	26
58	Plasticity to wind is modular and genetically variable in Arabidopsis thaliana. Evolutionary Ecology, 2009, 23, 669-685.	0.5	23
59	Land use causes genetic differentiation of lifeâ€history traits in <i>Bromus hordeaceus</i> . Clobal Change Biology, 2013, 19, 892-899.	4.2	23
60	Evolutionary Significance of Epigenetic Variation. , 2012, , 257-274.		22
61	Plant ecotype affects interacting organisms across multiple trophic levels. Basic and Applied Ecology, 2016, 17, 688-695.	1.2	21
62	Evolutionary responses to land use in eight common grassland plants. Journal of Ecology, 2017, 105, 1290-1297.	1.9	21
63	Sources and modes of action of invasive knotweed allelopathy: the effects of leaf litter and trained soil on the germination and growth of native plants. NeoBiota, 0, 13, 15-30.	1.0	20
64	Geographical and land-use effects on seed-mass variation in common grassland plants. Basic and Applied Ecology, 2012, 13, 395-404.	1.2	19
65	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	1.9	19
66	The Global Garlic Mustard Field Survey (GGMFS): challenges and opportunities of a unique, large-scale collaboration for invasion biology. NeoBiota, 0, 21, 29-47.	1.0	19
67	Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes. Ecology Letters, 2022, 25, 1387-1400.	3.0	19
68	Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a 15N pulse-chasing experiment. Oecologia, 2019, 191, 389-396.	0.9	18
69	A complete digitization of German herbaria is possible, sensible and should be started now. Research Ideas and Outcomes, 0, 6, .	1.0	18
70	Plants adapted to warmer climate do not outperform regional plants during a natural heat wave. Ecology and Evolution, 2016, 6, 4160-4165.	0.8	16
71	Evolution of plant drought strategies and herbivore tolerance after two decades of climate change. New Phytologist, 2022, 235, 773-785.	3.5	16
72	Climate warming changes synchrony of plants and pollinators. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212142.	1.2	16

#	Article	IF	CITATIONS
73	Spatial patterns of plant association in grazed and ungrazed shrublands in the semi-arid Karoo, South Africa. Journal of Vegetation Science, 2000, 11, 253-258.	1.1	15
74	Plant populations of three threatened species experience rapid evolution under ex situ cultivation. Biodiversity and Conservation, 2019, 28, 3951-3969.	1.2	15
75	Enemy release and evolution of increased competitive ability: at last, a smoking gun!. New Phytologist, 2013, 198, 638-640.	3.5	13
76	Spring understory herbs flower later in intensively managed forests. Ecological Applications, 2021, 31, e02332.	1.8	13
77	Historical comparisons show evolutionary changes in drought responses in European plant species after two decades of climate change. Basic and Applied Ecology, 2022, 58, 26-38.	1.2	12
78	Isolation and characterization of microsatellite loci in the invasive Alliaria petiolata (Brassicaceae). Molecular Ecology Notes, 2004, 4, 173-175.	1.7	8
79	Plant-Soil Feedbacks of Plantago lanceolata in the Field Depend on Plant Origin and Herbivory. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	8
80	Environmental stress determines the colonization and impact of an endophytic fungus on invasive knotweed. Biological Invasions, 2022, 24, 1785-1795.	1.2	8
81	Forest wildflowers bloom earlier as Europe warms: lessons from herbaria and spatial modelling. New Phytologist, 2022, 235, 52-65.	3.5	8
82	Evolution during seed production for ecological restoration? A molecular analysis of 19 species finds only minor genomic changes. Journal of Applied Ecology, 2022, 59, 1383-1393.	1.9	7
83	Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia, 2016, 180, 409-420.	0.9	6
84	Genotypic diversity and environmental variability affect the invasibility of experimental plant populations. Oikos, 2018, 127, 570-578.	1.2	5
85	Genome report: a draft genome of <i>Alliaria petiolata</i> (garlic mustard) as a model system for invasion genetics. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
86	Transgenerational effects of temperature fluctuations in <i>Arabidopsis thaliana</i> . AoB PLANTS, 2021, 13, plab064.	1.2	5
87	Understanding plant microbiomes requires a genotype × environment framework. American Journal of Botany, 2021, 108, 1820-1823.	0.8	4
88	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	2.1	2
89	Variation in regrowth ability in relation to land-use intensity in three common grassland herbs. Journal of Plant Ecology, 2021, 14, 438-450.	1.2	2
90	Evolution Megalab: Die geheimnisvolle Vielfalt der BÄ ¤ derschnecken. Biologie in Unserer Zeit, 2009, 39, 14-15.	0.3	0

6