Malin Sjoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11991774/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fractionation and characterization of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Analytical and Bioanalytical Chemistry, 2019, 411, 3665-3674.	3.7	14
2	A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLoS ONE, 2019, 14, e0210690.	2.5	26
3	Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules, 2019, 125, 829-838.	7.5	46
4	Characterization of non-solvent precipitated starch using asymmetrical flow field-flow fractionation coupled with multiple detectors. Carbohydrate Polymers, 2019, 206, 21-28.	10.2	6
5	Pickering emulsions based on CaCl2-gelatinized oat starch. Food Hydrocolloids, 2018, 82, 288-295.	10.7	10
6	Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydrate Polymers, 2017, 157, 558-566.	10.2	79
7	Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization. Food Hydrocolloids, 2017, 63, 309-320.	10.7	147
8	Preparation and Characterization of Starch Particles for Use in Pickering Emulsions. Cereal Chemistry, 2016, 93, 116-124.	2.2	78
9	Fabrication of encapsulated oil powders from starch granule stabilized W/O/W Pickering emulsions by freeze-drying. Food Hydrocolloids, 2015, 51, 261-271.	10.7	92
10	Barrier properties of heat treated starch Pickering emulsions. Journal of Colloid and Interface Science, 2015, 450, 182-188.	9.4	97
11	Particle-stabilized Emulsions. Contemporary Food Engineering, 2015, , 101-122.	0.2	1
12	Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 48-62.	4.7	317
13	The Use of Micro- and Nanoparticles in the Stabilisation of Pickering-Type Emulsions for Topical Delivery. Current Pharmaceutical Biotechnology, 2014, 14, 1222-1234.	1.6	23
14	Freezing and freeze-drying of Pickering emulsions stabilized by starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 512-520.	4.7	81
15	Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science and Nutrition, 2013, 1, 157-171.	3.4	164
16	Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423, 147-153.	4.7	117
17	From Molecules to Products: Some Aspects of Structure–Function Relationships in Cereal Starches. Cereal Chemistry, 2013, 90, 326-334.	2.2	16
18	Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday Discussions, 2012, 158, 139.	3.2	137

Malin Sjoo

#	Article	IF	CITATIONS
19	Quinoa starch granules: a candidate for stabilising foodâ€grade Pickering emulsions. Journal of the Science of Food and Agriculture, 2012, 92, 1841-1847.	3.5	201
20	Characterization of starch Pickering emulsions for potential applications in topical formulations. International Journal of Pharmaceutics, 2012, 428, 1-7.	5.2	205
21	Starch particles for food based Pickering emulsions. Procedia Food Science, 2011, 1, 95-103.	0.6	151