Elie El Agha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1199049/publications.pdf

Version: 2024-02-01

279798 265206 2,418 42 44 23 h-index citations g-index papers 50 50 50 3375 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell, 2017, 21, 166-177.	11.1	309
2	Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell, 2017, 20, 261-273.e3.	11.1	217
3	Fgf10-Expressing Tanycytes Add New Neurons to the Appetite/Energy-Balance Regulating Centers of the Postnatal and Adult Hypothalamus. Journal of Neuroscience, 2013, 33, 6170-6180.	3.6	207
4	Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nature Communications, 2019, 10, 2987.	12.8	181
5	<i>Fgf10</i> -positive cells represent a progenitor cell population during lung development and postnatally. Development (Cambridge), 2014, 141, 296-306.	2.5	136
6	Fgf10-Hippo Epithelial-Mesenchymal Crosstalk Maintains and Recruits Lung Basal Stem Cells. Developmental Cell, 2017, 43, 48-59.e5.	7.0	123
7	Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathogens, 2016, 12, e1005544.	4.7	113
8	Evidence for the involvement of Fibroblast Growth Factor 10 in lipofibroblast formation during embryonic lung development. Development (Cambridge), 2015, 142, 4139-50.	2.5	100
9	Increased FGF1-FGFRc expression in idiopathic pulmonary fibrosis. Respiratory Research, 2015, 16, 83.	3.6	89
10	Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair. PLoS ONE, 2011, 6, e23139.	2.5	87
11	<i>miR-142-3p</i> balances proliferation and differentiation of mesenchymal cells during lung development. Development (Cambridge), 2014, 141, 1272-1281.	2.5	68
12	Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. Scientifica, 2014, 2014, 1-20.	1.7	67
13	A Breath of Fresh Air on the Mesenchyme: Impact of Impaired Mesenchymal Development on the Pathogenesis of Bronchopulmonary Dysplasia. Frontiers in Medicine, 2015, 2, 27.	2.6	67
14	Characterization of a Novel Fibroblast Growth Factor 10 (Fgf10) Knock-In Mouse Line to Target Mesenchymal Progenitors during Embryonic Development. PLoS ONE, 2012, 7, e38452.	2.5	60
15	<i>Fgf10</i> deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. Journal of Pathology, 2017, 241, 91-103.	4.5	54
16	Origin and characterization of alpha smooth muscle actin-positive cells during murine lung development. Stem Cells, 2017, 35, 1566-1578.	3.2	48
17	Multilineage murine stem cells generate complex organoids to model distal lung development and disease. EMBO Journal, 2020, 39, e103476.	7.8	44
18	PDGFRα and αSMA mark two distinct mesenchymal cell populations involved in parenchymal and vascular remodeling in pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L684-L697.	2.9	33

#	Article	IF	CITATIONS
19	Resident cell lineages are preserved in pulmonary vascular remodeling. Journal of Pathology, 2018, 244, 485-498.	4.5	32
20	Role of fibroblast growth factors in organ regeneration and repair. Seminars in Cell and Developmental Biology, 2016, 53, 76-84.	5.0	29
21	Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia. Human Molecular Genetics, 2019, 28, 1429-1444.	2.9	28
22	Identification of a Repair-Supportive Mesenchymal Cell Population during Airway Epithelial Regeneration. Cell Reports, 2020, 33, 108549.	6.4	28
23	Generation and Validation of miR-142 Knock Out Mice. PLoS ONE, 2015, 10, e0136913.	2.5	26
24	Low density lipoprotein receptor-related protein 1 couples \hat{l}^21 integrin activation to degradation. Cellular and Molecular Life Sciences, 2018, 75, 1671-1685.	5.4	25
25	Ex vivo analysis of the contribution of FGF10 ⁺ cells to airway smooth muscle cell formation during early lung development. Developmental Dynamics, 2017, 246, 531-538.	1.8	24
26	Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Developmental Dynamics, 2017, 246, 235-244.	1.8	22
27	Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1014-L1024.	2.9	19
28	Mesenchymal adenomatous polyposis coli plays critical and diverse roles in regulating lung development. BMC Biology, 2015, 13, 42.	3.8	17
29	A novel mouse Creâ€driver line targeting Perilipin 2â€expressing cells in the neonatal lung. Genesis, 2017, 55, e23080.	1.6	15
30	Is the fibroblast growth factor signaling pathway a victim of receptor tyrosine kinase inhibition in pulmonary parenchymal and vascular remodeling?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L248-L252.	2.9	14
31	The Lung Vasculature: A Driver or Passenger in Lung Branching Morphogenesis?. Frontiers in Cell and Developmental Biology, 2020, 8, 623868.	3.7	13
32	3D In Vitro Models: Novel Insights into Idiopathic Pulmonary Fibrosis Pathophysiology and Drug Screening. Cells, 2022, 11, 1526.	4.1	13
33	A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development. Cellular and Molecular Life Sciences, 2019, 76, 2817-2832.	5.4	6
34	Differential LysoTracker Uptake Defines Two Populations of Distal Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 235.	4.1	6
35	Validation of a Novel Fgf10Cre–ERT2 Knock-in Mouse Line Targeting FGF10Pos Cells Postnatally. Frontiers in Cell and Developmental Biology, 2021, 9, 671841.	3.7	5
36	Protocol for the generation of murine bronchiolospheres. STAR Protocols, 2021, 2, 100594.	1.2	5

#	Article	IF	CITATION
37	Transcriptional Profiling of Insulin-like Growth Factor Signaling Components in Embryonic Lung Development and Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 1973.	4.1	4
38	Early transcriptional regulation by Câ€peptide in freshly isolated rat proximal tubular cells. Diabetes/Metabolism Research and Reviews, 2011, 27, 697-704.	4.0	3
39	Good Things Come in 2s: Type 2 Alveolar Epithelial Cells and Fibroblast Growth Factor Receptor 2. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 543-545.	2.9	3
40	Pulmonary Hypertension due to Lung Diseases and/or Hypoxia: What Do We Actually Know?. Canadian Respiratory Journal, 2017, 2017, 1-2.	1.6	2
41	Embryonic mesothelium in motion: a systematic study. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L764-L766.	2.9	2
42	Evidence for the involvement of lipofibroblasts, airway smooth muscle cells and FGF10 signalling in lung repair., 2021,, 99-113.		1
43	Editorial: Branching Morphogenesis During Embryonic Lung Development. Frontiers in Cell and Developmental Biology, 2021, 9, 728954.	3.7	0
44	Evidence for Multiple Origins of De Novo Formed Vascular Smooth Muscle Cells in Pulmonary Hypertension: Challenging the Dominant Model of Pre-Existing Smooth Muscle Expansion. International Journal of Environmental Research and Public Health, 2021, 18, 8584.	2.6	0