
William Ussler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11988468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ Autonomous Acquisition and Preservation of Marine Environmental DNA Using an Autonomous Underwater Vehicle. Frontiers in Marine Science, 2019, 6, .	2.5	88
2	Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field. Frontiers in Microbiology, 2017, 8, 1042.	3.5	26
3	Autonomous Application of Quantitative PCR in the Deep Sea: In Situ Surveys of Aerobic Methanotrophs Using the Deep-Sea Environmental Sample Processor. Environmental Science & Technology, 2013, 47, 9339-9346.	10.0	47
4	Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?. Marine and Petroleum Geology, 2013, 43, 381-395.	3.3	142
5	Abundance and distribution of diverse membraneâ€bound monooxygenase (<scp>C</scp> uâ€ <scp>MMO</scp>) genes within the <scp>C</scp> osta <scp>R</scp> ica oxygen minimum zone. Environmental Microbiology Reports, 2013, 5, 414-423.	2.4	42
6	A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2580-2588.	2.6	81
7	In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	47
8	Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME Journal, 2010, 4, 700-710.	9.8	77
9	Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 297-306.	1.4	55
10	Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chemical Geology, 2010, 275, 127-138.	3.3	44
11	Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Marine Letters, 2008, 28, 43-51.	1.1	79
12	Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Marine Geology, 2008, 250, 258-275.	2.1	84
13	Planktonic and Sediment-Associated Aerobic Methanotrophs in Two Seep Systems along the North American Margin. Applied and Environmental Microbiology, 2008, 74, 3985-3995.	3.1	85
14	Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1240-1267.	1.4	57
15	Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1268-1291.	1.4	229
16	Methane-derived authigenic carbonates from the northern Gulf of Mexico — MD02 Cruise. Journal of Geochemical Exploration, 2007, 95, 1-15.	3.2	24
17	Discordant 14C-stratigraphies in upper Monterey Canyon: A signal of anthropogenic disturbance. Marine Geology, 2006, 233, 21-36.	2.1	37
18	Trail of sand in upper Monterey Canyon: Offshore California. Bulletin of the Geological Society of America, 2005, 117, 1134.	3.3	131

WILLIAM USSLER

#	Article	IF	CITATIONS
19	Deep sea vibracoring system improves ROV sampling capability. Eos, 2001, 82, 325-325.	0.1	13
20	Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 1999, 159, 131-154.	2.1	328
21	Carbon cycling within the upper methanogenic zone of continental rise sediments; An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Marine Chemistry, 1997, 57, 299-311.	2.3	135
22	Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 1996, 24, 655.	4.4	478
23	Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate–bearing sediments. Geology, 1996, 24, 143.	4.4	157
24	Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates. Geology, 1995, 23, 89.	4.4	173
25	Graphical analysis of enthalpy-composition relationships in mixed magmas. Journal of Volcanology and Geothermal Research, 1992, 51, 23-40.	2.1	14
26	Is the extent of glaciation limited by marine gasâ€hydrates?. Geophysical Research Letters, 1991, 18, 432-434.	4.0	230
27	Phase equilibria along a basalt-rhyolite mixing line: implications for the origin of calc-alkaline intermediate magmas. Contributions To Mineralogy and Petrology, 1989, 101, 232-244.	3.1	41
28	Crustal extension, crustal density, and the evolution of Cenozoic magmatism in the basin and range of the western United States. Journal of Geophysical Research, 1989, 94, 7952-7960.	3.3	51
29	Trapping of magma at midcrustal density discontinuities. Geophysical Research Letters, 1988, 15, 673-675.	4.0	68