Arie Bruinink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11985930/publications.pdf

Version: 2024-02-01

24 papers 3,664 citations

14 h-index

706676

799663 21 g-index

24 all docs

24 docs citations

times ranked

24

7126 citing authors

#	Article	IF	CITATIONS
1	Controlled formation of chitosan particles by a clock reaction. Soft Matter, 2018, 14, 6415-6418.	1.2	22
2	Harvesting pre-polarized macrophages using thermo-responsive substrates. Scientific Reports, 2017, 7, 42495.	1.6	8
3	Effect of particle agglomeration in nanotoxicology. Archives of Toxicology, 2015, 89, 659-675.	1.9	121
4	<i>In vitro</i> investigations of a novel wound dressing concept based on biodegradable polyurethane. Science and Technology of Advanced Materials, 2015, 16, 034606.	2.8	22
5	Improving cell adhesion: development of a biosensor for cell behaviour monitoring by surface grafting of sulfonic groups onto a thermoplastic polyurethane. Journal of Materials Science: Materials in Medicine, 2014, 25, 2017-2026.	1.7	14
6	From implantation to degradation â€" are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1041-e1051.	1.7	34
7	Addition of nanoscaledbioinspiredsurface features: A revolution for bone related implants and scaffolds?. Journal of Biomedical Materials Research - Part A, 2014, 102, 275-294.	2.1	48
8	Evaluation of early stage human bone marrow stromal proliferation, cell migration and osteogenic differentiation on $1-4$ -MIM structured stainless steel surfaces. Journal of Materials Science: Materials in Medicine, 2013, 24, 1285-1292.	1.7	2
9	Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion. Applied Surface Science, 2013, 283, 744-750.	3.1	10
10	Surface Microstructures on Planar Substrates and Textile Fibers Guide Neurite Outgrowth: A Scaffold Solution to Push Limits of Critical Nerve Defect Regeneration?. PLoS ONE, 2012, 7, e50714.	1.1	13
11	In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features. , 2012, 23, 333-347.		10
12	Evaluation of Biocompatibility Using In Vitro Methods: Interpretation and Limitations. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 117-152.	0.6	27
13	Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids and Surfaces B: Biointerfaces, 2011, 82, 371-377.	2.5	40
14	Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion. Colloid and Polymer Science, 2009, 287, 1469-1474.	1.0	8
15	In vitro effects of SWCNT: Role of treatment duration. Physica Status Solidi (B): Basic Research, 2009, 246, 2423-2427.	0.7	3
16	Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal, 2009, 45, 1412-1419.	2.6	160
17	Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. Journal of Materials Science: Materials in Medicine, 2008, 19, 1523-1527.	1.7	69
18	The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters, 2007, 168, 121-131.	0.4	732

#	Article	IF	CITATIONS
19	Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells:Â Influence of Chemical Composition and Catalytic Activity on Oxidative Stress. Environmental Science & Echnology, 2007, 41, 4158-4163.	4.6	785
20	The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon, 2007, 45, 2643-2648.	5.4	175
21	Identification of neurotoxic chemicals in cell cultures. ALTEX: Alternatives To Animal Experimentation, 2007, 24 Spec No, 22-5.	0.9	O
22	In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubilityâ€. Environmental Science & Technology, 2006, 40, 4374-4381.	4.6	1,207
23	The effect of topographic characteristics on cell migration velocity. Biomaterials, 2006, 27, 5230-5241.	5.7	151
24	In Vitro Toxicokinetics and Dynamics: Modeling and Interpretation of Toxicity Data., 0,, 509-550.		3