Sukhjinder Nijjer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11985215/publications.pdf

Version: 2024-02-01

394421 377865 34 2,230 19 34 citations g-index h-index papers 38 38 38 2279 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multicenter Core Laboratory Comparison of the Instantaneous Wave-Free Ratio and Resting P /P With Fractional Flow Reserve. Journal of the American College of Cardiology, 2014, 63, 1253-1261.	2.8	301
2	Diagnostic Classification of the Instantaneous Wave-Free Ratio Is Equivalent to Fractional Flow Reserve and Is Not Improved With Adenosine Administration. Journal of the American College of Cardiology, 2013, 61, 1409-1420.	2.8	209
3	Incomplete Stent Apposition Causes High Shear Flow Disturbances and Delay in Neointimal Coverage as a Function of Strut to Wall Detachment Distance. Circulation: Cardiovascular Interventions, 2014, 7, 180-189.	3.9	178
4	Diagnostic Accuracy of Computed Tomography–Derived Fractional Flow Reserve. JAMA Cardiology, 2017, 2, 803.	6.1	166
5	Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: results of the ADVISE registry. EuroIntervention, 2013, 9, 91-101.	3.2	161
6	Baseline Instantaneous Wave-Free Ratio as a Pressure-Only Estimation of Underlying Coronary Flow Reserve. Circulation: Cardiovascular Interventions, 2014, 7, 492-502.	3.9	152
7	The Evolving Future of InstantaneousÂWave-Free Ratio and Fractional FlowÂReserve. Journal of the American College of Cardiology, 2017, 70, 1379-1402.	2.8	148
8	Fractional Flow Reserve–Guided Revascularization. JACC: Cardiovascular Interventions, 2013, 6, 222-225.	2.9	139
9	Impact of stent strut design in metallic stents and biodegradable scaffolds. International Journal of Cardiology, 2014, 177, 800-808.	1.7	136
10	Fractional Flow Reserve/InstantaneousÂWave-Free Ratio Discordance in Angiographically Intermediate CoronaryÂStenoses. JACC: Cardiovascular Interventions, 2017, 10, 2514-2524.	2.9	104
11	Fractional Flow Reserve and Instantaneous Wave-Free Ratio as Predictors of the Placebo-Controlled Response to Percutaneous Coronary Intervention in Stable Single-Vessel Coronary Artery Disease. Circulation, 2018, 138, 1780-1792.	1.6	88
12	Head-to-head comparison of basal stenosis resistance index, instantaneous wave-free ratio, and fractional flow reserve: diagnostic accuracy for stenosis-specific myocardial ischaemia. EuroIntervention, 2015, 11, 914-925.	3.2	62
13	Hemodynamic Response to Intravenous Adenosine and Its Effect on Fractional Flow Reserve Assessment. Circulation: Cardiovascular Interventions, 2013, 6, 654-661.	3.9	59
14	Physiological Pattern of Disease Assessed by Pressure-Wire Pullback Has an Influence on Fractional Flow Reserve/Instantaneous Wave-Free Ratio Discordance. Circulation: Cardiovascular Interventions, 2019, 12, e007494.	3.9	47
15	Dobutamine Stress Echocardiography Ischemia as a Predictor of the Placebo-Controlled Efficacy of Percutaneous Coronary Intervention in Stable Coronary Artery Disease. Circulation, 2019, 140, 1971-1980.	1.6	46
16	Quantification of the Effect of Pressure Wire Drift on the Diagnostic Performance of Fractional Flow Reserve, Instantaneous Wave-Free Ratio, and Whole-Cycle Pd/Pa. Circulation: Cardiovascular Interventions, 2016, 9, e002988.	3.9	45
17	Clinical Events After Deferral of LADÂRevascularization Following PhysiologicalÂCoronaryÂAssessment. Journal of the American College of Cardiology, 2019, 73, 444-453.	2.8	35
18	Combining Baseline Distal-to-Aortic Pressure Ratio and Fractional Flow Reserve in the Assessment of Coronary AStenosis Severity. JACC: Cardiovascular Interventions, 2015, 8, 1681-1691.	2.9	25

#	Article	IF	CITATIONS
19	Instantaneous Wave-Free Ratio. Journal of the American College of Cardiology, 2013, 62, 566.	2.8	21
20	Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses. Circulation: Cardiovascular Interventions, 2019, 12, e008263.	3.9	20
21	ECG-Independent Calculation of Instantaneous Wave-Free Ratio. JACC: Cardiovascular Interventions, 2015, 8, 2043-2046.	2.9	16
22	Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H619-H627.	3.2	13
23	Cardiopulmonary exercise testing and efficacy of percutaneous coronary intervention: a substudy of the ORBITA trial. European Heart Journal, 2022, 43, 3132-3145.	2.2	12
24	Achieving Optimal Medical Therapy: Insights From the ORBITA Trial. Journal of the American Heart Association, 2021, 10, e017381.	3.7	11
25	Fractional flow reserve derived from microcatheters versus standard pressure wires: a stenosis-level meta-analysis. Open Heart, 2019, 6, e000971.	2.3	8
26	Regression of left ventricular hypertrophy provides an additive physiological benefit following treatment of aortic stenosis: Insights from serial coronary wave intensity analysis. Acta Physiologica, 2018, 224, e13109.	3.8	6
27	Placebo-Controlled Efficacy of Percutaneous Coronary Intervention for Focal and Diffuse Patterns of Stable Coronary Artery Disease. Circulation: Cardiovascular Interventions, 2021, 14, e009891.	3.9	6
28	How high can "accuracy" be for iFR (or IVUS, or SPECT, or OCT) if using fractional flow reserve as the gold standard? EuroIntervention, 2013, 9, 770-2.	3.2	4
29	Achieving optimal adherence to medical therapy by telehealth: Findings from the ORBITA medication adherence subâ€study. Pharmacology Research and Perspectives, 2021, 9, e00710.	2.4	3
30	Reusable snorkel masks adapted as particulate respirators. PLoS ONE, 2021, 16, e0249201.	2.5	3
31	Reply. JACC: Cardiovascular Interventions, 2014, 7, 228-229.	2.9	2
32	Reply. Journal of the American College of Cardiology, 2013, 62, 943-945.	2.8	1
33	Can Resting Indices Obviate the Need for Hyperemia and Promote the Routine Use of Physiologically Guided Revascularization?. Interventional Cardiology Clinics, 2015, 4, 459-469.	0.4	1
34	Baseline coronary pressures, instant wave-free ratio (iFR) and Pd/Pa: making the most of available information. EuroIntervention, 2013, 9, 170-23.	3.2	1