Avner Friedman

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/11985180/publications.pdf
Version: 2024-02-01

1	Title is missing!. Indiana University Mathematics Journal, 1985, 34, 425.	0.9	527
2	MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19678-19683.	7.1	366
3	Variational problems with two phases and their free boundaries. Transactions of the American Mathematical Society, 1984, 282, 431-461.	0.9	301
4	Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6976-6981.	7.1	250
5	Analysis of a mathematical model for the growth of tumors. Journal of Mathematical Biology, 1999, 38, 262-284.	1.9	243
6	Clioma Virotherapy: Effects of Innate Immune Suppression and Increased Viral Replication Capacity. Cancer Research, 2006, 66, 2314-2319.	0.9	194
7	The Stefan problem in several space variables. Transactions of the American Mathematical Society, 1968, 133, 51-87.	0.9	186
8	Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2628-2633.	7.1	156
9	Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Archive for Rational Mechanics and Analysis, 1989, 105, 299-326.	2.4	155
10	The LDL-HDL Profile Determines the Risk of Atherosclerosis: A Mathematical Model. PLoS ONE, 2014, 9, e90497.	2.5	151
11	Convexity of solutions of semilinear elliptic equations. Duke Mathematical Journal, 1985, 52, 431.	1.5	149
12	Title is missing!. Indiana University Mathematics Journal, 1980, 29, 361.	0.9	149
13	Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions. Quarterly of Applied Mathematics, 1986, 44, 401-407.	0.7	145

\#	Article	IF	Citations
19	A Free Boundary Problem for an Elliptic-Hyperbolic System: An Application to Tumor Growth. SIAM Journal on Mathematical Analysis, 2003, 35, 974-986.	1.9	109
20	Volterra integral equations in Banach space. Transactions of the American Mathematical Society, 1967, 126, 131-179.	0.9	108
21	Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Mathematical Biosciences, 2000, 164, 103-137.	1.9	108
22	Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14472-14477.	7.1	108
23	A mathematical model of ischemic cutaneous wounds. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16782-16787.	7.1	107
24	HÃๆlder estimates for nonlinear degenerate parabolic sytems.. Journal Fur Die Reine Und Angewandte Mathematik, 1985, 1985, 1-22.	0.9	102
25	A mathematical model for pancreatic cancer growth and treatments. Journal of Theoretical Biology, 2014, 351, 74-82.	1.7	102
26	Continuity of the density of a gas flow in a porous medium. Transactions of the American Mathematical Society, 1979, 252, 99-113.	0.9	100
27	A mathematical model for pattern formation of glioma cells outside the tumor spheroid core. Journal of Theoretical Biology, 2009, 260, 359-371.	1.7	100
28	Blow-up of solutions of nonlinear degenerate parabolic equations. Archive for Rational Mechanics and Analysis, 1986, 96, 55-80.	2.4	99
29	Bifurcation From Stability to Instability for a Free Boundary Problem Arising in a Tumor Model. Archive for Rational Mechanics and Analysis, 2006, 180, 293-330.	2.4	99
30	Regularity of the Free Boundary for the One-Dimensional Flow of Gas in a Porous Medium. American Journal of Mathematics, 1979, 101, 1193.	1.1	98
31	MATHEMATICAL ANALYSIS AND CHALLENGES ARISING FROM MODELS OF TUMOR GROWTH. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1751-1772.	3.3	97
32	Title is missing!. Indiana University Mathematics Journal, 1975, 24, 1005.	0.9	97
33	Mathematical Analysis of a Model for the Initiation of Angiogenesis. SIAM Journal on Mathematical Analysis, 2002, 33, 1330-1355.	1.9	96
34	Title is missing!. Indiana University Mathematics Journal, 1989, 38, 563.	0.9	90
35	The time-harmonic maxwell equations in a doubly periodic structure. Journal of Mathematical Analysis and Applications, 1992, 166, 507-528.	1.0	86

37 Stochastic differential games. Journal of Differential Equations, 1972, 11, 79-108.

38 Asymptotic stability for a free boundary problem arising in a tumor model. Journal of Differential
Remarks on the maximum principle for parabolic equations and its applications. Pacific Journal of
Mathematics, 1958, 8, 201-211.
$40 \quad$ Analysis of a Mathematical Model of the Growth of Necrotic Tumors. Journal of Mathematical
Analysis and Applications, 2001, 255, 636-677.
41 Bifurcation for a Free Boundary Problem Modeling Tumor Growth by Stokes Equation. SIAM Journal

on Mathematical Analysis, 2007, 39, 174-194. (Nonlinear variational inequalities and differential games with stopping times. Journal of Functional \begin{tabular}{l}
Analysis, 1974, 16, 305-352.

$43 \quad$| Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. Journal of |
| :--- |
| Differential Equations, 1985, 60, 420-433. |

$44 \quad$| A dynamical system model of neurofilament transport in axons. Journal of Theoretical Biology, 2005, |
| :--- |
| 237, 316-322. |

\end{tabular}

The blow-up boundary for nonlinear wave equations. Transactions of the American Mathematical
Society, 1986, 297, 223-241.

Extinction properties of semilinear heat equations with strong absorption. Journal of Mathematical Analysis and Applications, 1987, 124, 530-546.

A free boundary problem for a singular system of differential equations: An application to a model of tumor growth. Transactions of the American Mathematical Society, 2003, 355, 3537-3590.
miR451 and AMPK Mutual Antagonism in Clioma Cell Migration and Proliferation: A Mathematical Model. PLoS ONE, 2011, 6, e28293.

A Free Boundary Problem for an Ellipticâ€"Parabolic System: Application to a Model of Tumor Growth.
Communications in Partial Differential Equations, 2003, 28, 517-560.
2.2

A model of intracellular transport of particles in an axon. Journal of Mathematical Biology, 2005, 51, 217-246.

Bifurcation from stability to instability for a free boundary problem modeling tumor growth by
Stokes equation. Journal of Mathematical Analysis and Applications, 2007, 327, 643-664.

Interaction of Tumor with Its Micro-environment: AÂMathematical Model. Bulletin of Mathematical Biology, 2010, 72, 1029-1068.

Asymptotic estimates for the plasma problem. Duke Mathematical Journal, 1980, 47, 705.
1.5
0.9

The Ill-Posed Hele-Shaw Model and The Stefan Problem for Supercooled Water. Transactions of the American Mathematical Society, 1984, 282, 183.

Mathematical modeling of prostate cancer progression in response to androgen ablation therapy.
Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19701-19706.

Reinforcement problems for elliptic equations and variational inequalities. Annali Di Matematica Pura
66 Ed Applicata, 1980, 123, 219-246.
1.0

61

Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: An
application to a model of tumor growth. Indiana University Mathematics Journal, 2003, 52, 1265-1304.

On integral equations of Volterra type. Journal D'Analyse Mathematique, 1963, 11, 381-413.
0.8

60

Analysis of a free-boundary tumor model with angiogenesis. Journal of Differential Equations, 2015,
259, 7636-7661.

ANALYSIS OF A MATHEMATICAL MODEL OF TUMOR LYMPHANGIOGENESIS. Mathematical Models and Methods in Applied Sciences, 2005, 15, 95-107.
3.3

58

71 The shape of axisymmetric rotating fluid. Journal of Functional Analysis, 1980, 35, 109-142.
1.4

55

A Hyperbolic Free Boundary Problem Modeling Tumor Growth. Interfaces and Free Boundaries, 2003, 5,
73 Optimal control in Banach spaces. Journal of Mathematical Analysis and Applications, 1967, 19, 35-55. 1.0 54
Maxwell's Equations in a Periodic Structure. Transactions of the American Mathematical Society, 1991,

```
77 Stochastic games and variational inequalities. Archive for Rational Mechanics and Analysis, 1973, 51,
```

$2.4 \quad 53$
79 A free boundary problem for a coupled system of elliptic, hyperbolic, and Stokes equations modeling tumor growth. Interfaces and Free Boundaries, 2006, 8, 247-261. $0.8 \quad 52$
80 National Academy of Sciences of the United States of America, 2018, 115, 4927-4932. $7.1 \quad 52$
81 Estimates on the support 0.1 52
82 Differentiability of the blow-up curve for one dimen
Rational Mechanics and Analysis, 1985, 91, 83-98. 2.4 51
83 A free boundary problem for steady small plaques in the artery and their stability. Journal of Differential Equations, 2015, 259, 1227-1255. 2.2 50
84 Optimal Control for Parabolic Variational Inequalities. SIAM Journal on Control and Optimization,2.11987, 25, 482-497.
49-
48
85 Stability for an inverse problem in potential theory. Transactions of the American Mathematical 0.9 Society, 1992, 332, 271-296.Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model.2.548PLoS ONE, 2018, 13, e0192449.
2.4 46
Convexity of the free boundary in the Stefan problem and in the dam problem. Archive for Rational
2.4
91 Asymmetric jet flows. Communications on Pure and Applied Mathematics, 1982, 35, 29-68.

92 | Modeling the inhibition of breast cancer growth by GM-CSF. Journal of Theoretical Biology, 2012, 303, |
| :--- |
| $141-151$. |

$93 \quad$| Anthrax epizootic and migration: Persistence or extinction. Mathematical Biosciences, 2013, 241, |
| :--- |
| $137-144$. |

Homogenization of the Cell Cytoplasm: The Calcium Bidomain Equations. Multiscale Modeling and
Simulation, 2006, 5, 1045-1062.

96 Mathematical Modeling of Interleukin-27 Induction of Anti-Tumor T Cells Response. PLoS ONE, 2014, 9, e91844.
2.5

43
Optimal control for parabolic equations. Journal of Mathematical Analysis and Applications, 1967, 18,
$479-491$.

98 Identification problems in potential theory. Archive for Rational Mechanics and Analysis, 1988, 101, 143-160.
2.4

42

```
99 Blow-up of solutions of nonlinear heat equations. Journal of Mathematical Analysis and Applications, 1988, 129, 409-419.
```

101 Mathematical Modeling of Interleukin-35 Promoting Tumor Growth and Angiogenesis. PLoS ONE, 2014,
42
2.5
101 9, el10126.
$102 \begin{aligned} & \text { Optimal c } \\ & 396-416 .\end{aligned}$
2.4 41
103 One dimensional Stefan problems with nonmonotone free boundary. Transactions of the American Mathematical Society, 1968, 133, 89-114.0.941

Periodic behaviour for the evolutionary dam problem and related free boundary problems Evolutionary dam problem. Communications in Partial Differential Equations, 1986, 11, 1297-1377.

Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a
1.9
mathematical model and experiments. Journal of Mathematical Biology, 2010, 61, 401-421.

A Mathematical Model for MicroRNA in Lung Cancer. PLoS ONE, 2013, 8, e53663.
2.5

41

107 Title is missing!. Indiana University Mathematics Journal, 1979, 28, 53.
109 Compressible flows of jets and cavities. Journal of Differential Equations, 1985, 56, 82-141. 40
110 Modeling Granulomas in Response to Infection in the Lung. PLoS ONE, 2016, 11, e0148738. 2.5 40
111 Detection of Mines by Electric Measurements. SIAM Journal on Applied Mathematics, 1987, 47, 201-212. 1.8 39
112 Title is missing!. Indiana University Mathematics Journal, 1973, 22, 1005.0.939
113 Analysis of a model of a virus that replicates selectively in tumor cells. Journal of Mathematical 1.9 38
114 Nitric Oxide Diffusion Rate is Reduced in the Aortic Wall. Biophysical Journal, 2008, 94, 1880-1889.0.537
115 Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a
mathematical model. BMC Systems Biology, 2017, 11, 70. 3.0 37
116 Title is missing!. Indiana University Mathematics Journal, 1974, 23, 991.0.937
$\begin{array}{ll} & \text { Inverse problems for } \\ 117 \\ 1995,132,49-72 .\end{array}$ 2.4 36
1.9 36The Role of Exosomes in Pancreatic Cancer Microenvironment. Bulletin of Mathematical Biology, 2018,80, 1111-1133.
119 Mathematical modeling of liver fibrosis. Mathematical Biosciences and Engineering, 2017, 14, 143-164. 1.9 36
120 A new proof and generalizations of the Cauchy-Kowalewski theorem. Transactions of the AmericanMathematical Society, 1961, 98, 1-20.0.935
121 On the definition of differential games and the existence of value and of saddle points. Journal of 2.2 35
Differential Equations, 1970, 7, 69-91.ON THE EXISTENCE OF SPATIALLY PATTERNED DORMANT MALIGNANCIES IN A MODEL FOR THE GROWTH OF122 NON-NECROTIC VASCULAR TUMORS. Mathematical Models and Methods in Applied Sciences, 2001, 11,3.335601-625.
Symmetry-Breaking Bifurcations of Charged Drops. Archive for Rational Mechanics and Analysis, 2004,2.435
172, 267-294.
0.9 35
124 Title is missing!. Indiana University Mathematics Journal, 1984, 33, 367.0.934

\#	Article	IF	Citations
127	Functions Satisfying the Mean Value Property. Transactions of the American Mathematical Society, 1962, 102, 167.	0.9	32
128	Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems. Archive for Rational Mechanics and Analysis, 1973, 52, 134-160.	2.4	32
129	The asymptotic behavior of gas in an ?-dimensional porous medium. Transactions of the American Mathematical Society, 1980, 262, 551-563.	0.9	32
130	A model on the influence of age on immunity to infection with Mycobacterium tuberculosis. Experimental Gerontology, 2008, 43, 275-285.	2.8	32
131	Analysis of a Mathematical Model of Ischemic Cutaneous Wounds. SIAM Journal on Mathematical Analysis, 2010, 42, 2013-2040.	1.9	32
132	The Blow-Up Time for Solutions of Nonlinear Heat Equations with Small Diffusion. SIAM Journal on Mathematical Analysis, 1987, 18, 711-721.	1.9	31
133	A mathematical model for chronic wounds. Mathematical Biosciences and Engineering, 2011, 8, 253-261.	1.9	31
134	Asymptotic behavior of solutions of parabolic equations of any order. Acta Mathematica, 1961, 106, 1-43.	3.9	30
135	Singular perturbations for partial differential equations. Archive for Rational Mechanics and Analysis, 1968, 29, 289-303.	2.4	30
136	Existence and dimensions of a rotating white dwarf. Journal of Differential Equations, 1981, 42, 414-437.	2.2	30
137	Identification of the Conductivity Coefficient in an Elliptic Equation. SIAM Journal on Mathematical Analysis, 1987, 18, 777-787.	1.9	30
138	Symmetry-breaking bifurcations for free boundary problems. Indiana University Mathematics Journal, 2005, 54, 927-947.	0.9	30
139	A multiscale tumor model. Interfaces and Free Boundaries, 2008, 10, 245-262.	0.8	30
140	The free boundary in the Thomas-Fermi atomic model. Journal of Differential Equations, 1979, 32, 335-356.	2.2	29
141	Approximate Traveling Waves in Linear Reactionâ€Hyperbolic Equations. SIAM Journal on Mathematical Analysis, 2006, 38, 741-758.	1.9	29
142	Blow-up of solutions of nonlinear parabolic equations. Mathematical Sciences Research Institute Publications, 1988, , 301-318.	0.3	29
143	Asymptotic stability and spiraling properties for solutions of stochastic equations. Transactions of the American Mathematical Society, 1973, 186, 331-331.	0.9	29
144	Existence of value and of saddle points for differential games of pursuit and evasion. Journal of Differential Equations, 1970, 7, 92-110.	2.2	28

\#	Article	IF	Citations
145	A filtration problem in a porous medium with variable permeability. Annali Di Matematica Pura Ed Applicata, 1977, 114, 377-393.	1.0	28
146	The role of CD200â€"CD200R in tumor immune evasion. Journal of Theoretical Biology, 2013, 328, 65-76.	1.7	28
147	Mathematical model of chronic pancreatitis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5011-5016.	7.1	28
148	Choindroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Anti Tumor Efficacy: A Mathematical Model. PLoS ONE, 2014, 9, e102499.	2.5	28
149	Title is missing!. Indiana University Mathematics Journal, 1978, 27, 143.	0.9	28
150	The Stefan problem for a hyperbolic heat equation. Journal of Mathematical Analysis and Applications, 1989, 138, 249-279.	1.0	27
151	A boundary value problem for the poisson equation with multi-scale oscillating Boundary. Journal of Differential Equations, 1997, 137, 54-93.	2.2	27
152	Mathematical modeling in scheduling cancer treatment with combination of VEGF inhibitor and chemotherapy drugs. Journal of Theoretical Biology, 2019, 462, 490-498.	1.7	27
153	Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8, 371-383.	1.9	27
154	Quasi-static motion of a capillary drop, II: the three-dimensional case. Journal of Differential Equations, 2002, 186, 509-557.	2.2	26
155	Fatal disease and demographic Allee effect: population persistence and extinction. Journal of Biological Dynamics, 2012, 6, 495-508.	1.7	26
156	Asymptotic estimates for an axisymmetric rotating fluid. Journal of Functional Analysis, 1980, 37, 136-163.	1.4	25
157	Conduction-convection problems with change of phase. Journal of Differential Equations, 1986, 62, 129-185.	2.2	25
158	Oxygen regulates the effective diffusion distance of nitric oxide in the aortic wall. Free Radical Biology and Medicine, 2010, 48, 554-559.	2.9	25
159	Stochastic Differential Equations and Applications. , 2010, , 75-148.		25
160	Free boundary problems in biology. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140368.	3.4	25
161	Monotonicity of solutions of Volterra integral equations in Banach space. Transactions of the American Mathematical Society, 1969, 138, 129-148.	0.9	24
162	The free boundary of a flow in a porous body heated from its boundary. Nonlinear Analysis: Theory, Methods \& Applications, 1986, 10, 879-900.	1.1	24

\#	Article	IF	Citations
163	A variational inequality approach to financial valuation of retirement benefits based on salary. Finance and Stochastics, 2002, 6, 273-302.	1.1	24
164	Nonlinear stability of the Muskat problem with capillary pressure at the free boundary. Nonlinear Analysis: Theory, Methods \& Applications, 2003, 53, 45-80.	1.1	24
165	Involvement of Tumor Macrophage HIFs in Chemotherapy Effectiveness: Mathematical Modeling of Oxygen, pH, and Glutathione. PLoS ONE, 2014, 9, e107511.	2.5	24
166	Mathematical Modeling of Biological Processes. Lecture Notes on Mathematical Modelling in the Life Sciences, 2014, , .	0.4	24
167	Immune response to infection by Leishmania: A mathematical model. Mathematical Biosciences, 2016, 276, 28-43.	1.9	24
168	Reinforcement of the principal eigenvalue of an elliptic operator. Archive for Rational Mechanics and Analysis, 1980, 73, 1-17.	2.4	23
169	Control of Free Boundary Problems with Hysteresis. SIAM Journal on Control and Optimization, 1988, 26, 42-55.	2.1	23
170	Free boundary problems for parabolic equations. Bulletin of the American Mathematical Society, 1970, 76, 934-942.	3.9	22
171	Asymptotic behavior of solutions of linear stochastic differential systems. Transactions of the American Mathematical Society, 1973, 181, 1-1.	0.9	22
172	Cell cycle control at the first restriction point and its effect on tissue growth. Journal of Mathematical Biology, 2010, 60, 881-907.	1.9	22
173	Qualitative Network Modeling of the Myc-p53 Control System of Cell Proliferation and Differentiation. Biophysical Journal, 2011, 101, 2082-2091.	0.5	22
174	Mathematics in Industrial Problems. The IMA Volumes in Mathematics and Its Applications, 1990, , .	0.5	22
175	Exosomal miRs in Lung Cancer: A Mathematical Model. PLoS ONE, 2016, 11, e0167706.	2.5	22
176	A mathematical model of aortic aneurysm formation. PLoS ONE, 2017, 12, e0170807.	2.5	22
177	Title is missing!. Indiana University Mathematics Journal, 1982, 31, 135.	0.9	22
178	PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7, 691-703.	1.1	22
179	Boundary Estimates for Second Order Parabolic Equations and Their Applications. Indiana University Mathematics Journal, 1958, 7, 771-791.	0.9	21
180	Axially symmetric cavities in rotational flows. Communications in Partial Differential Equations, 1983, 8, 949-997.	2.2	21

181	The Stefan problem with small surface tension. Transactions of the American Mathematical Society, 1991, 328, 465-515.	0.9	21
182	A Stefan Problem for a Protocell Model. SIAM Journal on Mathematical Analysis, 1999, 30, 912-926.	1.9	21
183	Stationary Non-Newtonian Fluid FlowsÂqin Channel-like and Pipe-like Domains. Archive for Rational Mechanics and Analysis, 2000, 151, 1-43.	2.4	21
184	Malaria model with periodic mosquito birth and death rates. Journal of Biological Dynamics, 2009, 3, 430-445.	1.7	21
185	Modeling the host response to inhalation anthrax. Journal of Theoretical Biology, 2011, 276, 199-208.	1.7	21
186	A Bovine Babesiosis Model with Dispersion. Bulletin of Mathematical Biology, 2014, 76, 98-135.	1.9	21
187	On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential Equations. Indiana University Mathematics Journal, 1958, 7, 43-59.	0.9	20
188	A quasilinear parabolic system arising in modelling of catalytic reactors. Journal of Differential Equations, 1987, 70, 167-196.	2.2	20
189	Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 945-967.	0.9	20
190	A three dimensional model of wound healing: Analysis and computation. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2691-2712.	0.9	20
191	Mathematical Model of the Roles of T Cells in Inflammatory Bowel Disease. Bulletin of Mathematical Biology, 2013, 75, 1417-1433.	1.9	19

\#	Article	IF	
199	The dam problem with two layers. Archive for Rational Mechanics and Analysis, 1978, 68, 125-154.	2.4	17
200	Regularity of the solution of the quasi variational inequality for the impulse control problem. Communications in Partial Differential Equations, 1978, 3, 745-753.	2.2	17
201	Nonlinear Optimal Control Problems for Parabolic Equations. SIAM Journal on Control and Optimization, 1984, 22, 805-816.	2.1	17
202	Exosomal microRNA concentrations in colorectal cancer: A mathematical model. Journal of Theoretical Biology, 2017, 415, 70-83.	1.7	17
203	Granuloma formation in leishmaniasis: A mathematical model. Journal of Theoretical Biology, 2017, 412, 48-60.	1.7	17
204	How to schedule VEGF and PD-1 inhibitors in combination cancer therapy?. BMC Systems Biology, 2019, 13, 30.	3.0	17
205	Parabolic equations of the second order. Transactions of the American Mathematical Society, 1959, 93, 509-509.	0.9	17
206	Title is missing!. Indiana University Mathematics Journal, 1978, 27, 527.	0.9	17
207	Functions satsifying the mean value property. Transactions of the American Mathematical Society, 1962, 102, 167-167.	0.9	16
208	Periodic behavior of solutions of Volterra integral equations. Journal D'Analyse Mathematique, 1965, 15, 287-303.	0.8	16
209	A quality control problem and quasi-variational inequalities. Archive for Rational Mechanics and Analysis, 1977, 63, 205-252.	2.4	16
210	Blow-Up Estimates for a Nonlinear Hyperbolic Heat Equation. SIAM Journal on Mathematical Analysis, 1989, 20, 354-366.	1.9	16
211	A Stefan problem for a protocell model with symmetry-breaking bifurcations of analytic solutions. Interfaces and Free Boundaries, 2001, 3, 143-199.	0.8	16
212	A Mathematical Model of CR3/TLR2 Crosstalk in the Context of Francisella tularensis Infection. PLoS Computational Biology, 2012, 8, e1002757.	3.2	16
213	Introduction to Mathematical Biology. Springer Undergraduate Texts in Mathematics and Technology, 2016, , .	0.1	16
214	TGF-î2 inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS ONE, 2021, 16, e0252620.	2.5	16
215	Serum uPAR as Biomarker in Breast Cancer Recurrence: A Mathematical Model. PLoS ONE, 2016, 11, e0153508.	2.5	16
216	Estimates on the free boundary for quasi variational inequalities. Communications in Partial Differential Equations, 1977, 2, 297-321.	2.2	15

217 Cavitational flow in a channel with oscillatory wall. Nonlinear Analysis: Theory, Methods \& 1.1 15
Applications, 1983, 7, 1175-1192.
$1.0 \quad 15$
Applications, 1988, 132, 171-186. 218
1.7 15
219 Rheumatoid arthritis - a mathematical model. Journal of Theoretical Biology, 2019, 461, 17-33.
220 Mathematics in Industrial Problems. The IMA Volumes in Mathematics and Its Applications, 1994, , 0.5 15
221 On two theorems of PhragmÃ ©n-LindelÃศf for linear elliptic and parabolic differential equations of the 0.5 second order. Pacific Journal of Mathematics, 1957, 7, 1563-1575.15
Differential games of pursuit in Banach space. Journal of Mathematical Analysis and Applications, 1969,25, 93-113.
223 A free boundary problem connected with non-steady filtration in porous media. Nonlinear Analysis: Theory, Methods \& Applications, 1977, 1, 503-545.$1.1 \quad 14$
224 Optimal Stopping Problems in Stochastic Control. SIAM Review, 1979, 21, 71-80. 9.5 14
225 Bang-bang optimal control for the dam problem. Applied Mathematics and Optimization, 1987, 15, 65-85. 1.6 14
226 The blow-up time for higher order semilinear parabolic equations with small leading coefficients. Journal of Differential Equations, 1988, 75, 239-263. 2.2 14Quasistatic Motion of a Capillary Drop I. The Two-Dimensional Case. Journal of Differential Equations,
$227 \quad \begin{aligned} & \text { Quasistatic Motion of } \\ & \text { 2002, 178, 212-263. }\end{aligned}$
2.2 14
The Heleâ€"Shaw problem with surface tension in a half-plane. Journal of Differential Equations, 2005, 2.2 14
216, 439-469.
2.9 14The extensional flow of a thin sheet of incompressible, transversely isotropic fluid. European Journalof Applied Mathematics, 2008, 19, 225-257.230 Asymptotic phases in a cell differentiation model. Journal of Differential Equations, 2009, 247, 736-769.2.214Tuberculosis research: Going forward with a powerful â€œTranslational Systems Biologyâ€•approach.1.914Tuberculosis, 2010, 90, 7-8.2.213232 Upper and lower values of differential games. Journal of Differential Equations, 1972, 12, 462-473.
Optimal Periodic Control for the Two-Phase Stefan Problem. SIAM Journal on Control and 2.1 13
235 Nonstationary filtration in partially saturated porous media. European Journal of Applied 2.9 13
235 Mathematics, 1994, 5, 405-429.
2.9 13
Modeling the effects of resection, radiation and chemotherapy in glioblastoma. Journal of
236 Neuro-Oncology, 2009, 91, 287-293.
$2.4 \quad 13$
$237 \begin{aligned} & \text { On a Multiphase Multicompon } \\ & \text { Analysis, 2014, 211, 257-300. }\end{aligned}$
238 Nonattainability of a set by a diffusion process. Transactions of the American Mathematical Society,0.913
239 Nonlinear Optimal Control Problems in Heat Conduction. SIAM Journal on Control and Optimization, 2.1 12
239 1983, 21, 940-952.
$1.0 \quad 12$
Concavity of solutions of nonlinear ordinary differential equations. Journal of Mathematical 240 Analysis and Applications, 1988, 131, 486-500.
1.0
241 A model of crystal precipitation. Journal of Mathematical Analysis and Applications, 1989, 137, 550-575. 12
242 Optimal Design of Domains with Free-Boundary Problems. SIAM Journal on Control and Optimization,1991, 29, 623-637.2.112
243 The Hele-Shaw problem with surface tension in a half-plane: A model problem. Journal of Differential 2.2 12
243 Equations, 2005, 216, 387-438.
1.8 12
$244 \begin{aligned} & \text { Host Demographic Allee Effect, Fatal Disease, and } \\ & \text { on Applied Mathematics, 2012, 72, 1644-1666. }\end{aligned}$
0.9 12
245 Limit behavior of solutions of stochastic differential equations. Transactions of the American Mathematical Society, 1972, 170, 359-359.0.912Small Random Perturbations of Dynamical Systems and Applications to Parabolic Equations. IndianaUniversity Mathematics Journal, 1974, 24, 533-553.
11247 Optimal design of an optical lens. Archive for Rational Mechanics and Analysis, 1987, 99, 147-164.
248
Analysis of a Mathematical Model of Protocell. Journal of Mathematical Analysis and Applications,1.011
1999, 236, 171-206.
$3.3 \quad 11$
249
THE ROLE OF OXYGEN IN TISSUE MAINTENANCE: MATHEMATICAL MODELING AND QUALITATIVE ANALYSIS. Mathematical Models and Methods in Applied Sciences, 2008, 18, 1409-1441.Effects of CCN1 and Macrophage Content on Glioma Virotherapy: A Mathematical Model. Bulletin of

[^0]253 On Quasi-Linear Parabolic Equations of the Second Order. Indiana University Mathematics Journal,
The Free Boundary for Variational Inequalities with Nonlocal Operators. SIAM Journal on Control
255 Regularity of the solution of the quasi variational inequality for the impulse control problem, II.
257 Crystal precipitation with discrete initial data. Journal of Mathematical Analysis and Applications, 1989, 137, 576-590.$1.0 \quad 10$
Asymptotic behavior for a coalescence problem. Transactions of the American Mathematical Society,1993, 338, 133-158.
259 Head-Media Interaction in Magnetic Recording. Archive for Rational Mechanics and Analysis, 1997, 140, 79-101. 2.4 10
260 Uniform Convergence for Approximate Traveling Waves in Linear Reactionâ€"Diffusionấ"HyperbolicSystems. Archive for Rational Mechanics and Analysis, 2007, 186, 251-274.
261 Mathematical modeling of cancer treatment with radiation and PD-L1 inhibitor. Science China1.710
262 Title is missing!. Indiana University Mathematics Journal, 1980, 29, 205.0.910
263 Title is missing!. Indiana University Mathematics Journal, 1994, 43, 1167. 0.9 10
264 The role of TNF-Î \pm inhibitor in glioma virotherapy: A mathematical model. MathematicalBiosciences and Engineering, 2017, 14, 305-319.1.910
0.9 9

\square
Wandering out to infinity of diffusion processes. Transactions of the American Mathematical Society, 265 1973, 184, 185-185.266 A class of parabolic quasi-variational inequalities. Journal of Differential Equations, 1976, 21, 395-416.2.29
267 Time Dependent Free Boundary Problems. SIAM Review, 1979, 21, 213-221. 9.5 9
Analyticity for the Navier-Stokes equations governed by surface tension on the free boundary.Journal of Differential Equations, 1984, 55, 135-150.
271 Mathematical model of colitis-associated colon cancer. Journal of Theoretical Biology, 2013, 317,
20-29.

272 Inflammatory Bowel Disease: How Effective Is TNF-Î士 Suppression?. PLoS ONE, 2016, 11, e0165782.
2.5

9
273 TNF-̂̂̀ inhibitor reduces drug-resistance to anti-PD-1: A mathematical model. PLoS ONE, 2020, 15, e0231499. 2.5

274 Uniqueness for the Cauchy problem for degenerate parabolic equations. Pacific Journal of Mathematics, 1973, 46, 131-147.
0.5

9
275 Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences and Engineering, 2005, 2, 473-485.$1.9 \quad 9$$1.9 \quad 9$
A model of drug resistance with infection by health care workers. Mathematical Biosciences and $276 \quad$ Angineering, 2010, 7, 779-792.
$277 \quad \begin{aligned} & \text { Free Boundary Problems for Parabolic Equations II. Evapo } \\ & \text { Indiana University Mathematics Journal, 1960, 9, 19-66. }\end{aligned}$ 0.9 8
278 Differential games with restricted phase coordinates. Journal of Differential Equations, 1970, 8, 135-162.$2.2 \quad 8$
279 Alternate play in differential games. Journal of Differential Equations, 1974, 15, 560-588. 2.2 8
280 Optimal Inspections in a Stochastic Control Problem with Costly Observations. Mathematics of Operations Research, 1977, 2, 155-190.
1.0 8
On the support of the solution of a system of
Analysis and Applications, 1978, 65, 660-674.2.28Regularity and asymptotic behavior of two immiscible fluids in a one-dimensional porous medium.Journal of Differential Equations, 1979, 31, 366-391.
1.1 8
The contact set of a rigid body partially supp
Methods \& Applications, 1986, 10, 251-276.A nonlinear nonlocal wave equation arising in combustion theory. Nonlinear Analysis: Theory,1.18
Methods \& Applications, 1990, 14, 93-106.284$1.0 \quad 8$A transport model with micro- and macro-structure. Journal of Differential Equations, 1992, 98,328-354.
The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media. Archive for
Rational Mechanics and Analysis, 2000, 152, 103-139.2.4
289 Asymptotic limit in a cell differentiation model with consideration of transcription. Journal of 2.2
Differential Equations, 2012, 252, 5679-5711.8A two-phase free boundary problem with discontinuous velocity: Application to tumor model. Journal1.0$1.0-8$
of Mathematical Analysis and Applications, 2013, 399, 378-393. 290

$0.9 \quad 8$
$291 \begin{aligned} & \text { Function-theoretic characterization of Einstein spaces } \\ & \text { American Mathematical Society, 1961, 101, 240-258. }\end{aligned}$ 0.9
8
The free boundary for elastic-plastic torsion problems. Transactions of the American Mathematical 0.9 8
292 Society, 1980, 257, 411-411.
0.98
293 Title is missing!. Indiana University Mathematics Journal, 1976, $25,103$. 8
294 Free boundary problems for systems of Stokes equations. Discrete and Continuous Dynamical Systems 0.9 8

- Series B, 2016, 21, 1455-1468.
2.5
Combination therapy for mCRPC with immune checkpoint inhibitors, ADT and vaccine: A mathematical 295 model. PLoS ONE, 2022, 17, e0262453.
$\begin{array}{ll}2.4 & 7\end{array}$
Uniqueness of solutions of ordinary differential inequalities in Hilbert space. Archive for Rational 296 Uniqueness of solutions of ordinary differentian2.4
Mechanics and Analysis, 1969, 34, 165-187. 297 Linear-quadratic differential games with non-zero sum and with N players. Archive for Rational
298 Comparison theorems for differential games. I. Journal of Differential Equations, 1972, 12, 162-172.2.27
299 Multidimensional quality control problems and quasivariational inequalities. Transactions of the American Mathematical Society, 1978, 246, 31-76.$1.0 \quad 7$Extinction and positivity for a system of semilinear parabolic variational inequalities. Journal ofMathematical Analysis and Applications, 1992, 167, 167-175.
$2.4 \quad 7$Rational Mechanics and Analysis, 1993, 123, 259-303.302 Headâ€"Media Interaction in Magnetic Recording. Journal of Differential Equations, 2001, 171, 443-461.2.27
303 Title is missing!. Indiana University Mathematics Journal, 1978, $27,551$. 0.9 7Mathematics, 1966, 16, 267-271.
305 Bodies for which harmonic functions satisfy the mean value property. Transactions of the American Mathematical Society, 1962, 102, 147-166.
A class of parabolic quasi-variational inequalities, II. Journal of Differential Equations, 1976, 22,
$379-401$.

310 Optimal Inspections in a Stochastic Control Problem with Costly Observations, II. Mathematics of
A Nonlinear Evolution Problem Associated with an Electropaint Process. SIAM Journal on
Mathematical Analysis, 1985, 16, 955-969. Injection of ideal fluid from a slot into a free stream. Archive for Rational Mechanics and Analysis,313 An optical lens for focusing two pairs of points. Archive for Rational Mechanics and Analysis, 1988,
101,57-83.
315 A MATHEMATICAL MODEL FOR CELL-INDUCED GEL COMPACTION IN VITRO. Mathematical Models and Methods in Applied Sciences, 2013, 23, 127-163.
316 A mathematical model of the multiple sclerosis plaque. Journal of Theoretical Biology, 2021, 512,110532..Regularity of fundamental solutions of hyperbolic equations. Archive for Rational Mechanics and317 Analysis, 1962, 11, 62-96.Correction to the paper: A free boundary problem connected with non-steady filtration in porous

Multi-Dimensional Quality Control Problems and Quasi Variational Inequalities. Transactions of the
American Mathematical Society, 1978, 246, 31.0.95A free boundary problem arising in electrophotography. Nonlinear Analysis: Theory, Methods \&1.15Applications, 1991, 16, 729-759.
321 Coping with complex boundaries. The IMA Volumes in Mathematics and Its Applications, 1995, , 166-185. 0.5 5
The blow-up surface for nonlinear wave equations with small spatial velocity. Transactions of the
A mathematical model of immunomodulatory treatment in myocardial infarction. Journal of1.75

The Optimal Strategy in the Control Problem Associated with the Hamiltonâ $\epsilon_{\text {" JJacobiấe"Bellman Equation. }} 325$ SIAM Journal on Control and Optimization, 1980, 18, 191-198.

326 Unloading in the elastic-plastic torsion problem. Journal of Differential Equations, 1981, 41, 186-217.
$2.2 \quad 4$

327	Variational Inequalities in Sequential Analysis. SIAM Journal on Mathematical Analysis, 1981, 12, 385-397.	1.9	4
328	Cavitational flow in a channel with oscillatory wall. Nonlinear Analysis: Theory, Methods \& Applications, 1984, 8, 115-132.	1.1	4
329	Optimal control for the dam problem. Applied Mathematics and Optimization, 1985, 13, 59-78.	1.6	4
330	A variational inequality associated with liquid on a soap film. Archive for Rational Mechanics and Analysis, 1986, 93, 15-44.	2.4	4
331	A hyperbolic inverse problem arising in the evolution of combustion aerosol. Archive for Rational Mechanics and Analysis, 1990, 110, 313-350.	2.4	4

332 Chapter 22 Differential games. Handbook of Game Theory With Economic Applications, 1994, 2, 781-799.
1.3
$\begin{array}{ll} & \\ \text { A Stefan Prob } \\ \text { 1089-1112 }\end{array}$
A Stefan Problem for Multidimensional Reaction-Diffusion Systems. SIAM Journal on Mathematical Analysis, 1996, 27, 1212-1234.
335 ANALYSIS OF THE STICK-SLIP PROBLEM FOR
1.9

4
2.2 4
336 Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32,$0.9 \quad 4$
3081-3097.
0.4 4Epidemiological Models with Seasonality. Lecture Notes on Mathematical Modelling in the Life
337 Sciences, 2013, , 389-410.2.2
3743-3769.
A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences and
339 Engineering, 2013, 10, 591-608.1.94
Quality control for Markov chains and free boundary problems. Transactions of the American
340 Mathematical Society, 1978, 246, 77-94.0.93
On the free boundary of a quasivariational inequality arising in a problem of quality control.
Transactions of the American Mathematical Society, 1978, 246, 95-110. 341A non-steady flow of liquid in a porous pipe with variable permeability. Journal of DifferentialEquations, 1979, 34, 1-24.

345 Homogenization Approach to Light Scattering from Polymer-Dispersed Liquid Crystal Films. SIAM Journal on Applied Mathematics, 1992, 52, 46-64.

346 A free boundary problem arising in superconductor modeling. Asymptotic Analysis, 1992, 6, 109-133.
A Parabolic-Hyperbolic Quasilinear System. Communications in Partial Differential Equations, 2008, 33,
$969-987$.
On n-Metaharmonic Functions and Harmonic Functions of Infinite Order. Proceedings of the
American Mathematical Society, 1957, 8, 223.

350 Optimal play for a class of differential games with fixed duration. Journal D'Analyse Mathematique, 1970, 23, 113-131.

351 Probabilistic methods in partial differential equations. Israel Journal of Mathematics, 1972, 13, 56-64.
0.8

Existence of extended value for differential games of generalized pursuit-evasion. Journal of Differential Equations, 1973, 13, 172-181.

353 A Note on Generalized Pursuit-Evasion Games. SIAM Journal on Control and Optimization, 1975, 13,
105-109.
1.6

Interaction between stochastic differential equations and partial differential equations. , 1979, ,
$354 \quad$ Interaction
2

A free boundary problem associated with icing in a channel. Nonlinear Analysis: Theory, Methods \&
1.1

Applications, 1987, 11, 501-526.

Averaged Motion of Charged Particles in a Curved Strip. SIAM Journal on Applied Mathematics, 1997, 57, 1557-1587.

Asymptotic behavior of solutions of coagulation-fragmentation models. Indiana University Mathematics Journal, 1998, 47, 0-0.

The evolution of stress intensity factors in the propagation of two dimensional cracks. European Journal of Applied Mathematics, 2000, 11, 453-471.

[^1]1.1

2

361	Mathematical Model of Chronic Dermal Wounds in Diabetes and Obesity. Bulletin of Mathematical Biology, 2020, 82, 137.	1.9	2
362	Analysis of a mathematical model of rheumatoid arthritis. Journal of Mathematical Biology, 2020, 80, 1857-1883.	1.9	2
363	Analysis of a mathematical model of immune response to fungal infection. Journal of Mathematical Biology, 2021, 83, 8.	1.9	2
364	Sequential testing of several simple hypotheses for a diffusion process and the corresponding free boundary problem. Pacific Journal of Mathematics, 1981, 93, 49-94.	0.5	2
365	Cancer-Immune Interaction. Springer Undergraduate Texts in Mathematics and Technology, 2016, , 137-146.	0.1	2
366	Free boundary problems arising in biology. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 193-202.	0.9	2
367	Increase hemoglobin level in severe malarial anemia while controlling parasitemia: A mathematical model. Mathematical Biosciences, 2020, 326, 108374.	1.9	2
368	Linear Partial Differential Systems with an Additional Differential Equation at One Point. Indiana University Mathematics Journal, 1958, 7, 173-190.	0.9	1
369	Computation of saddle points for differential games of pursuit and evasion. Archive for Rational Mechanics and Analysis, 1971, 40, 79-119.	2.4	1
370	Correction to my paper â€œupper and lower values of differential gamesâ€: Journal of Differential Equations, 1973, 14, 395-396.	2.2	1
371	A non-local diffusion equation arising in terminally attached polymer chains. European Journal of Applied Mathematics, 1990, 1, 311-326.	2.9	1
372	A free-boundary problem modeling loop dislocations in crystals. Archive for Rational Mechanics and Analysis, 1992, 119, 229-291.	2.4	1
373	Multiscale Modeling of Electrical and Intracellular Activity in the Pancreas: The Islet Tridomain Equations. Multiscale Modeling and Simulation, 2009, 7, 1609-1642.	1.6	1

374 Overcoming Drug Resistance to BRAF Inhibitor. Bulletin of Mathematical Biology, 2020, 82, 8. 1.9 1

Free Boundary Problems Arising in Industry. The IMA Volumes in Mathematics and Its Applications, 1993, , 1-10.

Unresolved Mathematical Issues in Coating Flow Mechanics. The IMA Volumes in Mathematics and Its Applications, 1988, , 20-31.
379 Predatorâ€"Prey Models. Springer Undergraduate Texts in Mathematics and Technology, 2016, , 51-63. 0.1

1
381 Some problems in sequential analysis. , 1982, , 85-93.0
Functional differential equations for the determination of the viscosity function in a rheometer. Archive for Rational Mechanics and Analysis, 1989, 107, 85-97.
383 Swelling of a rubber ball in the presence of a good solvent. Nonlinear Analysis: Theory, Methods \&1.10
Atherosclerosis: The Risk of High Cholesterol. Springer Undergraduate Texts in Mathematics andTechnology, 2016, , 129-136.
$385 \quad$ System of Two Linear Differ0.1
386 Bacterial Growth in Chemostat. Springer Undergraduate Texts in Mathematics and Technology, 2016, , 3-27.
The Chemostat Model Revisited. Springer Undergraduate Texts in Mathematics and Technology, 2016, ,87-95.387 The Ch
389 Can malaria parasite pathogenesis be prevented by treatment with tumor necrosis factor-alpha?. Mathematical Biosciences and Engineering, 2013, 10, 609-624. .9 0Neurofilaments Transport in Axon. Lecture Notes on Mathematical Modelling in the Life Sciences,390 2014, , 93-101.
0.4 0
391 Stopping Time Problems and the Shape of the Domain of Continuation. Lecture Notes in Economics and Mathematical Systems, 1975, , 559-566.0.30Some Fluid Mechanics Problems in U.K. Industry. The IMA Volumes in Mathematics and Its Applications,1988, , 66-75.
393 Phase Change Problems with Void. The IMA Volumes in Mathematics and Its Applications, 1988, , 97-104. 0.5 0
Solutions to problems from volume 1. The IMA Volumes in Mathematics and Its Applications, 1989, ,

[^2]399 Computation of volume integr$401 \begin{aligned} & \text { Solutions to problems from parts } 2 \hat{1} €^{\prime \prime} 4 \text {. The IMA Volumes in Mathematics and Its Applications, 1992, , } \\ & 210-214 .\end{aligned}$
403 Mass transport in colloidal dispersions. The IMA Volumes in Mathematics and Its Applications, 1995, ,
A phenomenological model for
Applications, 1997, , 186-196.
409
Solutions to problems from previous parts. The IMA Volumes in Mathematics and Its Applications, 1998, , 179-181.

[^0]: Dirichlet problem for degenerate elliptic equations. Transactions of the American Mathematical
 Society, 1973, 186, 359-359.

[^1]: 359
 Free boundary problems with surface tension conditions. Nonlinear Analysis: Theory, Methods \&
 Applications, 2005, 63, 666-671.

[^2]: Optimal switching between a pair of Brownian motions. The IMA Volumes in Mathematics and Its Applications, 1989, , 118-127.

