Leslie M Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11984344/publications.pdf

Version: 2024-02-01

257429 454934 7,353 31 24 30 citations g-index h-index papers 32 32 32 8230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Translating cell therapies for neurodegenerative diseases: Huntington's disease as a model disorder. Brain, 2022, 145, 1584-1597.	7.6	7
2	Diminished LC3-Associated Phagocytosis by Huntington's Disease Striatal Astrocytes. Journal of Huntington's Disease, 2022, 11, 25-33.	1.9	7
3	Treatment with JQ1, a BET bromodomain inhibitor, is selectively detrimental to R6/2 Huntington's disease mice. Human Molecular Genetics, 2020, 29, 202-215.	2.9	13
4	Aberrant Development Corrected in Adult-Onset Huntington's Disease iPSC-Derived Neuronal Cultures via WNT Signaling Modulation. Stem Cell Reports, 2020, 14, 406-419.	4.8	45
5	The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations. Cell Systems, 2018, 6, 13-24.	6.2	327
6	The ubiquitin conjugating enzyme Ube2W regulates solubility of the Huntington's disease protein, huntingtin. Neurobiology of Disease, 2018, 109, 127-136.	4.4	19
7	Longitudinal Biochemical Assay Analysis of Mutant Huntingtin Exon 1 Protein in R6/2 Mice. Journal of Huntington's Disease, 2018, 7, 321-335.	1.9	5
8	Striatal Mutant Huntingtin Protein Levels Decline with Age in Homozygous Huntington's Disease Knock-In Mouse Models. Journal of Huntington's Disease, 2018, 7, 137-150.	1.9	14
9	SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models. Cell Chemical Biology, 2016, 23, 849-861.	5.2	71
10	SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation. Cell Reports, 2013, 4, 362-375.	6.4	97
11	Targeting H3K4 trimethylation in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3027-36.	7.1	151
12	Methylene Blue Modulates Huntingtin Aggregation Intermediates and Is Protective in Huntington's Disease Models. Journal of Neuroscience, 2012, 32, 11109-11119.	3.6	86
13	Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease. Neurobiology of Disease, 2012, 46, 351-361.	4.4	157
14	Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Molecular Medicine, 2010, 2, 349-370.	6.9	124
15	SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7927-7932.	7.1	304
16	Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nature Reviews Drug Discovery, 2008, 7, 854-868.	46.4	650
17	Green tea (â^')-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Human Molecular Genetics, 2006, 15, 2743-2751.	2.9	357
18	Suppression of Huntington's disease pathology in <i>Drosophila</i> by human single-chain Fv antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11563-11568.	7.1	131

#	Article	IF	CITATIONS
19	Drosophila Models of Huntington Disease. , 2005, , 329-334.		O
20	Complex alteration of NMDA receptors in transgenic Huntington's disease mouse brain: analysis of mRNA and protein expression, plasma membrane association, interacting proteins, and phosphorylation. Neurobiology of Disease, 2003, 14, 624-636.	4.4	92
21	Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2041-2046.	7.1	805
22	Fly models of Huntington's disease. Human Molecular Genetics, 2003, 12, R187-R193.	2.9	78
23	A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nature Genetics, 2002, 30, 367-376.	21.4	167
24	Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 2001, 413, 739-743.	27.8	1,156
25	Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Human Molecular Genetics, 2000, 9, 13-25.	2.9	240
26	A Novel Skeletal Dysplasia with Developmental Delay and Acanthosis Nigricans Is Caused by a Lys650Met Mutation in the Fibroblast Growth Factor Receptor 3 Gene. American Journal of Human Genetics, 1999, 64, 722-731.	6.2	151
27	Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. American Journal of Medical Genetics Part A, 1998, 78, 274-281.	2.4	127
28	Effect of Transmembrane and Kinase Domain Mutations on Fibroblast Growth Factor Receptor 3 Chimera Signaling in PC12 Cells. Journal of Biological Chemistry, 1998, 273, 35250-35259.	3.4	47
29	Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genetics, 1995, 9, 321-328.	21.4	591
30	Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell, 1994, 78, 335-342.	28.9	1,218
31	A gene encoding a fibroblast growth factor receptor isolated from the Huntington disease gene region of human chromosome 4. Genomics, 1991, 11, 1133-1142.	2.9	115