
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1198384/publications.pdf Version: 2024-02-01

VEUE SHI

#	Article	IF	CITATIONS
1	Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARÎ3. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 511-529.	2.4	37
2	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	2.3	36
3	Inhibition of TGFβ-activated kinase 1 promotes inflammation-resolving microglial/macrophage responses and recovery after stroke in ovariectomized female mice. Neurobiology of Disease, 2021, 151, 105257.	2.1	14
4	Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2870-2886.	2.4	21
5	RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 720-738.	2.4	33
6	Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Experimental Neurology, 2020, 325, 113142.	2.0	39
7	IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32679-32690.	3.3	93
8	Transcriptomic and functional studies reveal undermined chemotactic and angiostimulatory properties of aged microglia during stroke recovery. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S81-S97.	2.4	29
9	Transforming Growth Factor Beta-Activated Kinase 1–Dependent Microglial and Macrophage Responses Aggravate Long-Term Outcomes After Ischemic Stroke. Stroke, 2020, 51, 975-985.	1.0	55
10	Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S49-S66.	2.4	41
11	The effect of age-related risk factors and comorbidities on white matter injury and repair after ischemic stroke. Neurobiology of Disease, 2019, 126, 13-22.	2.1	14
12	Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neuroscience and Therapeutics, 2019, 25, 1329-1342.	1.9	67
13	The interleukin-4/PPARÎ ³ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biology, 2019, 17, e3000330.	2.6	95
14	The effect of aging on brain injury and recovery after stroke. Neurobiology of Disease, 2019, 126, 1-2.	2.1	3
15	Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9115-9124.	3.3	37
16	Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiology of Disease, 2019, 126, 62-75.	2.1	31
17	Transient selective brain cooling confers neurovascular and functional protection from acute to chronic stages of ischemia/reperfusion brain injury. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1215-1231.	2.4	45
18	STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight, 2019, 4, .	2.3	146

#	Article	IF	CITATIONS
19	Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology, 2018, 163-164, 144-171.	2.8	565
20	Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology, 2018, 134, 208-217.	2.0	202
21	<i>In Vivo</i> Expansion of Regulatory T Cells with IL-2/IL-2 Antibody Complex Protects against Transient Ischemic Stroke. Journal of Neuroscience, 2018, 38, 10168-10179.	1.7	85
22	Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9230-E9238.	3.3	54
23	Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biology, 2018, 17, 323-337.	3.9	50
24	Selective role of Na ⁺ /H ⁺ exchanger in <i>Cx3cr1⁺</i> microglial activation, white matter demyelination, and postâ€stroke function recovery. Glia, 2018, 66, 2279-2298.	2.5	43
25	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	3.3	119
26	Repetitive and Prolonged Omega-3 Fatty Acid Treatment after Traumatic Brain Injury Enhances Long-Term Tissue Restoration and Cognitive Recovery. Cell Transplantation, 2017, 26, 555-569.	1.2	30
27	MicroRNA-15a/16-1 Antagomir Ameliorates Ischemic Brain Injury in Experimental Stroke. Stroke, 2017, 48, 1941-1947.	1.0	70
28	Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1224-1234.	1.2	56
29	Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. , 2017, 8, 531.		39
30	Translational Stroke Research on Blood-Brain Barrier Damage: Challenges, Perspectives, and Goals. Translational Stroke Research, 2016, 7, 89-92.	2.3	57
31	Microglia: A Double-Sided Sword in Stroke. Springer Series in Translational Stroke Research, 2016, , 133-150.	0.1	0
32	A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Translational Stroke Research, 2016, 7, 548-561.	2.3	70
33	Delayed Docosahexaenoic Acid Treatment Combined with Dietary Supplementation of Omega-3 Fatty Acids Promotes Long-Term Neurovascular Restoration After Ischemic Stroke. Translational Stroke Research, 2016, 7, 521-534.	2.3	34
34	APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3558-67.	3.3	42
35	Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications, 2016, 7, 10523.	5.8	309
36	Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiology of Disease, 2016, 91, 37-46.	2.1	70

#	Article	IF	CITATIONS
37	Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Scientific Reports, 2015, 5, 9621.	1.6	45
38	Apurinic/Apyrimidinic Endonuclease 1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury. Antioxidants and Redox Signaling, 2015, 22, 135-148.	2.5	31
39	HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2853-2858.	3.3	303
40	CART treatment improves memory and synaptic structure in APP/PS1 mice. Scientific Reports, 2015, 5, 10224.	1.6	33
41	Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Experimental Neurology, 2015, 272, 170-180.	2.0	44
42	Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Experimental Neurology, 2015, 272, 17-25.	2.0	118
43	White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Experimental Neurology, 2015, 272, 109-119.	2.0	150
44	Inhibition of WNK3 Kinase Signaling Reduces Brain Damage and Accelerates Neurological Recovery After Stroke. Stroke, 2015, 46, 1956-1965.	1.0	78
45	Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology, 2015, 11, 56-64.	4.9	1,093
46	The Role of Nicotinamide Phosphoribosyltransferase in Cerebral Ischemia. Current Topics in Medicinal Chemistry, 2015, 15, 2211-2221.	1.0	17
47	T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice. Journal of Experimental Medicine, 2014, 211, 595-604.	4.2	85
48	Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1. Journal of Neuroscience, 2014, 34, 1903-1915.	1.7	156
49	Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiology of Disease, 2014, 68, 91-103.	2.1	78
50	Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?. Progress in Neurobiology, 2014, 115, 189-209.	2.8	98
51	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	2.8	168
52	Upregulation of NHE1 protein expression enables glioblastoma cells to escape TMZ-mediated toxicity via increased H ⁺ extrusion, cell migration and survival. Carcinogenesis, 2014, 35, 2014-2024.	1.3	77
53	Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Progress in Neurobiology, 2014, 119-120, 60-84.	2.8	108
54	Ion Transporters in Microglial Function: New Therapeutic Targets for Neuroinflammation in Ischemic		0

Stroke?. , 2014, , 121-134.

#	Article	IF	CITATIONS
55	The Role of Na+/H+ Exchanger Isoform 1 in Inflammatory Responses: Maintaining H+ Homeostasis of Immune Cells. Advances in Experimental Medicine and Biology, 2013, 961, 411-418.	0.8	28
56	Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4362-8.	3.3	65
57	Stimulation of Na+/H+ Exchanger Isoform 1 Promotes Microglial Migration. PLoS ONE, 2013, 8, e74201.	1.1	23
58	Na+/H+ Exchangers as Therapeutic Targets for Cerebral Ischemia. , 2012, , 387-401.		0
59	Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. Journal of Neurochemistry, 2011, 119, 124-135.	2.1	59
60	Inhibiting the Na H exchanger reduces reperfusion injury a small animal MRI study. Frontiers in Bioscience - Elite, 2011, E3, 81-88.	0.9	18
61	p90 ^{RSK} activation contributes to cerebral ischemic damage via phosphorylation of Na ⁺ /H ⁺	2.1	22