Ralph Bock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1198275/publications.pdf

Version: 2024-02-01

242 papers 25,309 citations

7096 78 h-index 147 g-index

256 all docs

256 docs citations

256 times ranked 18271 citing authors

#	Article	IF	CITATIONS
1	GeSeq– versatile and accurate annotation of organelle genomes. Nucleic Acids Research, 2017, 45, W6-W11.	14.5	1,964
2	OrganellarGenomeDRAWâ€"a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 2013, 41, W575-W581.	14.5	1,408
3	OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research, 2019, 47, W59-W64.	14.5	1,157
4	OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics, 2007, 52, 267-274.	1.7	1,026
5	Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8529-8536.	7.1	751
6	Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes <i>in planta</i> . Plant Journal, 2008, 56, 505-516.	5.7	652
7	Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 2001, 19, 870-875.	17.5	453
8	Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 2015, 347, 991-994.	12.6	353
9	The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant Journal, 2000, 22, 97-104.	5.7	341
10	Generation of <i>Chlamydomonas</i> strains that efficiently express nuclear transgenes. Plant Journal, 2009, 57, 1140-1150.	5.7	297
11	Elimination of deleterious mutations in plastid genomes by gene conversion. Plant Journal, 2006, 46, 85-94.	5 . 7	296
12	Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 2005, 15, 305-327.	2.1	291
13	The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant Journal, 2003, 36, 457-470.	5.7	286
14	Molecular farming for new drugs and vaccines. EMBO Reports, 2005, 6, 593-599.	4.5	286
15	Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant Journal, 2009, 57, 436-445.	5 . 7	286
16	Engineering Plastid Genomes: Methods, Tools, and Applications in Basic Research and Biotechnology. Annual Review of Plant Biology, 2015, 66, 211-241.	18.7	282
17	High-frequency gene transfer from the chloroplast genome to the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8828-8833.	7.1	274
18	Transgenic Plastids in Basic Research and Plant Biotechnology. Journal of Molecular Biology, 2001, 312, 425-438.	4.2	266

#	Article	IF	Citations
19	Exchange of Genetic Material Between Cells in Plant Tissue Grafts. Science, 2009, 324, 649-651.	12.6	256
20	Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends in Biotechnology, 2017, 35, 871-882.	9.3	249
21	Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2434-2438.	7.1	246
22	The give-and-take of DNA: horizontal gene transfer in plants. Trends in Plant Science, 2010, 15, 11-22.	8.8	240
23	Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant Journal, 2006, 48, 857-872.	5.7	237
24	Why are most organelle genomes transmitted maternally?. BioEssays, 2015, 37, 80-94.	2.5	234
25	Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology, 2007, 18, 100-106.	6.6	228
26	Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6998-7002.	7.1	226
27	The Translational Apparatus of Plastids and Its Role in Plant Development. Molecular Plant, 2014, 7, 1105-1120.	8.3	208
28	Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein Â. Plant Cell, 2008, 20, 856-874.	6.6	201
29	Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 2009, 151, 59-66.	4.8	191
30	Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. Plant Cell, 2018, 30, 745-770.	6.6	191
31	Rpl33, a Nonessential Plastid-Encoded Ribosomal Protein in Tobacco, Is Required under Cold Stress Conditions Â. Plant Cell, 2008, 20, 2221-2237.	6.6	184
32	ATP Synthase Repression in Tobacco Restricts Photosynthetic Electron Transport, CO ₂ Assimilation, and Plant Growth by Overacidification of the Thylakoid Lumen. Plant Cell, 2011, 23, 304-321.	6.6	184
33	Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal, 2007, 49, 276-288.	5.7	182
34	Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E623-32.	7.1	179
35	Reconstructing evolution: Gene transfer from plastids to the nucleus. BioEssays, 2008, 30, 556-566.	2.5	177
36	Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Research, 2006, 34, 4537-4545.	14.5	170

#	Article	IF	CITATIONS
37	Highâ€level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnology Journal, 2008, 6, 897-913.	8.3	170
38	Plastid Biotechnology: Food, Fuel, and Medicine for the 21st Century. Plant Physiology, 2011, 155, 1501-1510.	4.8	169
39	Structure, function, and inheritance of plastid genomes. Topics in Current Genetics, 2007, , 29-63.	0.7	168
40	Global Analysis of the Role of Autophagy in Cellular Metabolism and Energy Homeostasis in Arabidopsis Seedlings under Carbon Starvation. Plant Cell, 2015, 27, 306-322.	6.6	166
41	Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Research, 2006, 34, 3842-3852.	14.5	161
42	Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. Journal of Molecular Evolution, 2006, 63, 194-207.	1.8	154
43	Lighting the Way to Protein-Protein Interactions: Recommendations on Best Practices for Bimolecular Fluorescence Complementation Analyses. Plant Cell, 2016, 28, 1002-1008.	6.6	151
44	Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening But Plays a Considerable Role in Seed Development À Â. Plant Physiology, 2011, 157, 1650-1663.	4.8	150
45	A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. ELife, 2016, 5, .	6.0	148
46	Horizontal genome transfer as an asexual path to the formation of new species. Nature, 2014, 511, 232-235.	27.8	146
47	Targeted Inactivation of a Tobacco Intron–containing Open Reading Frame Reveals a Novel Chloroplast-encoded Photosystem I–related Gene. Journal of Cell Biology, 1997, 139, 95-102.	5 . 2	145
48	Tuning a ménage à trois: Coâ€evolution and coâ€adaptation of nuclear and organellar genomes in plants. BioEssays, 2013, 35, 354-365.	2.5	141
49	Unraveling the Evolution of Auxin Signaling Â. Plant Physiology, 2011, 155, 209-221.	4.8	140
50	Taming plastids for a green future. Trends in Biotechnology, 2004, 22, 311-318.	9.3	134
51	Superwobbling facilitates translation with reduced tRNA sets. Nature Structural and Molecular Biology, 2008, 15, 192-198.	8.2	134
52	Nonessential Plastid-Encoded Ribosomal Proteins in Tobacco: A Developmental Role for Plastid Translation and Implications for Reductive Genome Evolution Â. Plant Cell, 2011, 23, 3137-3155.	6.6	130
53	Inducible gene expression from the plastid genome by a synthetic riboswitch. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6204-6209.	7.1	129
54	Generation of virusâ€resistant potato plants by <scp>RNA</scp> genome targeting. Plant Biotechnology Journal, 2019, 17, 1814-1822.	8.3	129

#	Article	IF	CITATIONS
55	Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism <i>Chlamydomonas reinhardtii</i> Â Â Â. Plant Cell, 2014, 26, 2310-2350.	6.6	123
56	Auxin signaling in algal lineages: fact or myth?. Trends in Plant Science, 2009, 14, 182-188.	8.8	121
57	Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature Communications, 2019, 10, 439.	12.8	119
58	The plastidâ€specific ribosomal proteins of <i>Arabidopsis thaliana</i> can be divided into nonâ€essential proteins and genuine ribosomal proteins. Plant Journal, 2012, 69, 302-316.	5.7	114
59	A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Current Genetics, 2008, 53, 381-388.	1.7	113
60	Dissecting the contributions of <scp>GC</scp> content and codon usage to gene expression in the model alga <i>Chlamydomonas reinhardtii</i>). Plant Journal, 2015, 84, 704-717.	5.7	113
61	Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I. Plant Physiology, 2015, 168, 1537-1549.	4.8	113
62	Genetic engineering of the chloroplast: novel tools and new applications. Current Opinion in Biotechnology, 2014, 26, 7-13.	6.6	111
63	Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-Binding Sites. PLoS Genetics, 2011, 7, e1002155.	3.5	109
64	Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 2019, 5, 525-538.	9.3	109
65	Plastid protein synthesis is required for plant development in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15730-15735.	7.1	108
66	Solar-powered factories for new vaccines and antibiotics. Trends in Biotechnology, 2010, 28, 246-252.	9.3	103
67	Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6579-6584.	7.1	100
68	Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant Journal, 2007, 52, 961-972.	5.7	99
69	Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids — a new regulatory mechanism?. Molecular Genetics and Genomics, 1993, 240, 238-244.	2.4	97
70	Deficiency in Phylloquinone (Vitamin K1) Methylation Affects Prenyl Quinone Distribution, Photosystem I Abundance, and Anthocyanin Accumulation in the Arabidopsis AtmenG Mutant. Journal of Biological Chemistry, 2006, 281, 40461-40472.	3.4	97
71	Experimental Reconstruction of Functional Gene Transfer from the Tobacco Plastid Genome to the Nucleus. Plant Cell, 2006, 18, 2869-2878.	6.6	96
72	Identification of protein stability determinants in chloroplasts. Plant Journal, 2010, 63, 636-650.	5.7	96

#	Article	IF	Citations
73	Synthetic biology in plastids. Plant Journal, 2014, 78, 783-798.	5.7	96
74	Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Research, 2008, 36, e124-e124.	14.5	94
75	Genome-Wide Analysis of Plastid Gene Expression in Potato Leaf Chloroplasts and Tuber Amyloplasts: Transcriptional and Posttranscriptional Control Â. Plant Physiology, 2009, 150, 2030-2044.	4.8	91
76	The Contributions of Wobbling and Superwobbling to the Reading of the Genetic Code. PLoS Genetics, 2012, 8, e1003076.	3.5	90
77	l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Molecular Biology, 2016, 90, 117-126.	3.9	88
78	Strategies for metabolic pathway engineering with multiple transgenes. Plant Molecular Biology, 2013, 83, 21-31.	3.9	84
79	The assembly pathway of complex I in <i>Arabidopsis thaliana</i> I plant Journal, 2019, 97, 447-459.	5.7	84
80	Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Molecular Biology, 2016, 90, 403-418.	3.9	83
81	Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nature Communications, 2017, 8, 1994.	12.8	83
82	Photosystem I: Its biogenesis and function in higher plants. Journal of Plant Physiology, 2011, 168, 1452-1461.	3.5	82
83	A Mediator of Singlet Oxygen Responses in <i>Chlamydomonas reinhardtii</i> and <i>Arabidopsis</i> Identified by a Luciferase-Based Genetic Screen in Algal Cells. Plant Cell, 2013, 25, 4209-4226.	6.6	82
84	Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant Journal, 2010, 64, 851-863.	5.7	80
85	High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Molecular Biology, 2011, 76, 311-321.	3.9	80
86	Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Reports, 2018, 22, 1657-1665.	6.4	80
87	The Plastid Genome-Encoded Ycf4 Protein Functions as a Nonessential Assembly Factor for Photosystem I in Higher Plants Â. Plant Physiology, 2012, 159, 579-591.	4.8	79
88	A Small Chloroplast-Encoded Protein as a Novel Architectural Component of the Light-Harvesting Antenna. Journal of Cell Biology, 2000, 149, 369-378.	5.2	78
89	Evidence That Cytochrome b559 Mediates the Oxidation of Reduced Plastoquinone in the Dark. Journal of Biological Chemistry, 2003, 278, 13554-13560.	3.4	77
90	METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of βâ€ɛyclocitral. Plant, Cell and Environment, 2017, 40, 216-226.	5.7	76

#	Article	IF	CITATIONS
91	Plastid transformation of highâ€biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIVâ€1) p24 antigen. Plant Biotechnology Journal, 2008, 6, 914-929.	8.3	73
92	Plastid transformation and its application in metabolic engineering. Current Opinion in Biotechnology, 2018, 49, 10-15.	6.6	73
93	Y3IP1, a Nucleus-Encoded Thylakoid Protein, Cooperates with the Plastid-Encoded Ycf3 Protein in Photosystem I Assembly of Tobacco and <i>Arabidopsis</i>	6.6	72
94	Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED1. Plant Physiology, 2018, 176, 2472-2495.	4.8	71
95	Witnessing Genome Evolution: Experimental Reconstruction of Endosymbiotic and Horizontal Gene Transfer. Annual Review of Genetics, 2017, 51, 1-22.	7.6	69
96	Knock-out of the Plastid-encoded PetL Subunit Results in Reduced Stability and Accelerated Leaf Age-dependent Loss of the Cytochrome b6f Complex. Journal of Biological Chemistry, 2007, 282, 976-985.	3.4	66
97	Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings. Phytochemistry, 2011, 72, 1081-1091.	2.9	66
98	Chloroplast DNA in Mature and Senescing Leaves: A Reappraisal Â. Plant Cell, 2014, 26, 847-854.	6.6	65
99	High-efficiency generation of fertile transplastomic Arabidopsis plants. Nature Plants, 2019, 5, 282-289.	9.3	65
100	Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species. Current Biology, 2017, 27, 3034-3041.e3.	3.9	62
101	Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Current Biology, 2018, 28, 1614-1619.e3.	3.9	62
102	Lack of the Small Plastid-encoded PsbJ Polypeptide Results in a Defective Water-splitting Apparatus of Photosystem II, Reduced Photosystem I Levels, and Hypersensitivity to Light. Journal of Biological Chemistry, 2002, 277, 14031-14039.	3.4	61
103	Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Molecular Biology, 2011, 76, 443-451.	3.9	60
104	Identification of <i>cis</i> â€elements conferring high levels of gene expression in nonâ€green plastids. Plant Journal, 2012, 72, 115-128.	5.7	60
105	A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Research, 2007, 16, 437-448.	2.4	59
106	An epigenetic gene silencing pathway selectively acting on transgenic DNA in the green alga Chlamydomonas. Nature Communications, 2020, 11 , 6269.	12.8	58
107	The plastome-encoded PsaJ subunit is required for efficient Photosystem I excitation, but not for plastocyanin oxidation in tobacco. Biochemical Journal, 2007, 403, 251-260.	3.7	57
108	Optimization of the expression of the HIV fusion inhibitor cyanovirinâ€N from the tobacco plastid genome. Plant Biotechnology Journal, 2011, 9, 599-608.	8.3	57

#	Article	IF	Citations
109	Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Research, 2011, 39, 1427-1438.	14.5	57
110	Transfer of the cytochrome P450-dependent dhurrin pathway from <i>Sorghum bicolor </i> into <i>Nicotiana tabacum </i> chloroplasts for light-driven synthesis. Journal of Experimental Botany, 2016, 67, 2495-2506.	4.8	57
111	Temperature sensitivity of RNA editing and intron splicing reactions in the plastid ndhB transcript. Current Genetics, 2002, 41, 48-52.	1.7	55
112	Design of chimeric expression elements that confer highâ€level gene activity in chromoplasts. Plant Journal, 2013, 73, 368-379.	5.7	53
113	Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Research, 2015, 43, e66-e66.	14.5	53
114	GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. Plant Cell, 2021, 33, 457-474.	6.6	53
115	Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Research, 2004, 32, 3615-3622.	14.5	52
116	Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Molecular Genetics and Genomics, 2006, 275, 185-192.	2.1	52
117	Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Nature Communications, 2020, 11 , 629 .	12.8	52
118	Highly Resolved Systems Biology to Dissect the Etioplast-to-Chloroplast Transition in Tobacco Leaves. Plant Physiology, 2019, 180, 654-681.	4.8	51
119	Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Research, 2012, 40, 6713-6724.	14.5	50
120	LCAA, a Novel Factor Required for Magnesium Protoporphyrin Monomethylester Cyclase Accumulation and Feedback Control of Aminolevulinic Acid Biosynthesis in Tobacco Â. Plant Physiology, 2012, 160, 1923-1939.	4.8	50
121	Identification of Enzymes for Adenosine-to-Inosine Editing and Discovery of Cytidine-to-Uridine Editing in Nucleus-Encoded Transfer RNAs of Arabidopsis. Plant Physiology, 2014, 166, 1985-1997.	4.8	49
122	The Conserved Endoribonuclease YbeY Is Required for Chloroplast Ribosomal RNA Processing in Arabidopsis. Plant Physiology, 2015, 168, 205-221.	4.8	49
123	Spontaneous Chloroplast Mutants Mostly Occur by Replication Slippage and Show a Biased Pattern in the Plastome of <i>Oenothera</i> . Plant Cell, 2016, 28, 911-929.	6.6	49
124	The Amino Acid Sequence of a Plastid Protein Is Developmentally Regulated by RNA Editing. Journal of Biological Chemistry, 2002, 277, 5570-5574.	3.4	48
125	RBF1, a Plant Homolog of the Bacterial Ribosome-Binding Factor RbfA, Acts in Processing of the Chloroplast 16S Ribosomal RNA. Plant Physiology, 2014, 164, 201-215.	4.8	48
126	Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. Journal of Experimental Botany, 2020, 71, 2670-2677.	4.8	48

#	Article	IF	CITATIONS
127	Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stressâ€induced response via the <i>VTC2</i> gene encoding GDPâ€ <scp> </scp> â€galactose phosphorylase. New Phytologist, 2017, 214, 668-681.	7.3	47
128	The vacuolar calcium sensors <scp>CBL</scp> 2 and <scp>CBL</scp> 3 affect seed size and embryonic development in <i>Arabidopsis thaliana</i> . Plant Journal, 2014, 78, 146-156.	5.7	46
129	Surprising features of plastid ndhD transcripts: addition of non-encoded nucleotides and polysome association of mRNAs with an unedited start codon. Nucleic Acids Research, 2004, 32, 542-550.	14.5	45
130	Recent Advances and Current Challenges in Synthetic Biology of the Plastid Genetic System and Metabolism. Plant Physiology, 2019, 179, 794-802.	4.8	45
131	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
132	Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Molecular Biology, 2013, 81, 13-25.	3.9	43
133	Chloroplast nucleoids are highly dynamic in ploidy, number, and structure during angiosperm leaf development. Plant Journal, 2020, 102, 730-746.	5.7	43
134	Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. Rna, 2009, 15, 1251-1257.	3.5	42
135	Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. Journal of Experimental Botany, 2018, 69, 3759-3771.	4.8	42
136	Horizontal genome transfer by cell-to-cell travel of whole organelles. Science Advances, 2021, 7, .	10.3	42
137	Inducible Repression of Nuclear-Encoded Subunits of the Cytochrome b6f Complex in Tobacco Reveals an Extraordinarily Long Lifetime of the Complex Â. Plant Physiology, 2014, 165, 1632-1646.	4.8	41
138	Lettuceâ€produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnology Journal, 2017, 15, 1611-1621.	8.3	41
139	A highly efficient sulfadiazine selection system for the generation of transgenic plants and algae. Plant Biotechnology Journal, 2019, 17, 638-649.	8.3	41
140	The Chlamydomonas Chloroplast HLP Protein Is Required for Nucleoid Organization and Genome Maintenance. Molecular Plant, 2009, 2, 1223-1232.	8.3	40
141	Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco. Plant Cell, 2017, 29, 3085-3101.	6.6	40
142	Stabilization and translation of synthetic operonâ€derived <scp>mRNA</scp> s in chloroplasts by sequences representing <scp>PPR</scp> proteinâ€binding sites. Plant Journal, 2018, 94, 8-21.	5.7	40
143	In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Molecular Genetics and Genomics, 1995, 247, 439-443.	2.4	39
144	Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5665-5674.	7.1	39

#	Article	IF	CITATIONS
145	Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant Journal, 2020, 103, 1967-1984.	5 . 7	39
146	Immunogenicity of chloroplastâ€derived HIVâ€1 p24 and a p24â€Nef fusion protein following subcutaneous and oral administration in mice. Plant Biotechnology Journal, 2011, 9, 629-638.	8.3	38
147	Genetic Transformation of the Model Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2012, 847, 35-47.	0.9	38
148	Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates. Plant Physiology, 2018, 176, 1485-1508.	4.8	37
149	Analysis of RNA Editing in Plastids. Methods, 1998, 15, 75-83.	3.8	36
150	RNA editing in an untranslated region of the Ginkgo chloroplast genome. Gene, 1999, 234, 81-86.	2.2	36
151	Revisiting the Role of Xanthophylls in Nonphotochemical Quenching. Journal of Physical Chemistry Letters, 2018, 9, 346-352.	4.6	36
152	Limited Responsiveness of Chloroplast Gene Expression during Acclimation to High Light in Tobacco. Plant Physiology, 2020, 182, 424-435.	4.8	36
153	Engineering Metabolism in Nicotiana Species: A Promising Future. Trends in Biotechnology, 2021, 39, 901-913.	9.3	35
154	Cytoplasm and chloroplasts are not suitable subcellular locations for Â-zein accumulation in transgenic plants. Journal of Experimental Botany, 2005, 56, 1205-1212.	4.8	33
155	Biolistic coâ€transformation of the nuclear and plastid genomes. Plant Journal, 2011, 67, 941-948.	5.7	33
156	Experimental Reconstruction of the Functional Transfer of Intron- Containing Plastid Genes to the Nucleus. Current Biology, 2012, 22, 763-771.	3.9	33
157	Reverse genetics in complex multigene operons by coâ€transformation of the plastid genome and its application to the open reading frame previously designated <i>psbN</i> . Plant Journal, 2013, 75, 1062-1074.	5.7	33
158	Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. Plant Molecular Biology, 2016, 91, 497-512.	3.9	33
159	Elimination of a group II intron from a plastid gene causes a mutant phenotype. Nucleic Acids Research, 2011, 39, 5181-5192.	14.5	32
160	Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. Journal of Experimental Botany, 2017, 68, 2199-2218.	4.8	31
161	The plastid-encoded Psal subunit stabilizes photosystem I during leaf senescence in tobacco. Journal of Experimental Botany, 2017, 68, 1137-1155.	4.8	31
162	Production of tetravalent dengue virus envelope protein domain <scp>III</scp> based antigens in lettuce chloroplasts and immunologic analysis for future oral vaccine development. Plant Biotechnology Journal, 2019, 17, 1408-1417.	8.3	31

#	Article	IF	CITATIONS
163	Improving plant drought tolerance and growth under water limitation through combinatorial engineering of signalling networks. Plant Biotechnology Journal, 2021, 19, 74-86.	8.3	31
164	Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. Microbiome, 2021, 9, 98.	11.1	31
165	Contributions of the international plant science community to the fight against infectious diseases in humansâ€"part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
166	Viral and murine interleukin-10 are correctly processed and retain their biological activity when produced in tobacco. BMC Biotechnology, 2009, 9, 22.	3.3	30
167	Photosynthesis without \hat{I}^2 -carotene. ELife, 2020, 9, .	6.0	30
168	Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nature Protocols, 2009, 4, 1262-1273.	12.0	29
169	Engineering Chloroplasts for High-Level Foreign Protein Expression. Methods in Molecular Biology, 2014, 1132, 93-106.	0.9	29
170	Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Science Advances, 2021, 7, eabi8307.	10.3	27
171	Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids. Nucleic Acids Research, 1995, 23, 2544-2547.	14.5	26
172	Insensitivity of chloroplast gene expression to DNA methylation. Molecular Genetics and Genomics, 2009, 282, 17-24.	2.1	26
173	Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Research, 2009, 18, 499-512.	2.4	26
174	Importance of adenosine-to-inosine editing adjacent to the anticodon in an Arabidopsis alanine tRNA under environmental stress. Nucleic Acids Research, 2013, 41, 3362-3372.	14.5	26
175	Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures. PLoS ONE, 2015, 10, e0122616.	2.5	26
176	In vivo Assembly in Escherichia coli of Transformation Vectors for Plastid Genome Engineering. Frontiers in Plant Science, 2017, 8, 1454.	3.6	26
177	High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. Plant Molecular Biology, 2018, 97, 357-370.	3.9	26
178	Efficient control of western flower thrips by plastid-mediated RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120081119.	7.1	26
179	An assay for entry of secreted fungal effectors into plant cells. New Phytologist, 2017, 213, 956-964.	7.3	25
180	Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice. New Phytologist, 2020, 228, 1401-1416.	7.3	25

#	Article	IF	Citations
181	Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. Plant Cell, 2022, 34, 2056-2079.	6.6	25
182	Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nature Plants, 2022, 8, 245-256.	9.3	25
183	Synthetic Lethality in the Tobacco Plastid Ribosome and Its Rescue at Elevated Growth Temperatures. Plant Cell, 2014, 26, 765-776.	6.6	24
184	Extensive Posttranscriptional Regulation of Nuclear Gene Expression by Plastid Retrograde Signals. Plant Physiology, 2019, 180, 2034-2048.	4.8	24
185	Isolation of highly active photosystem II core complexes with a His-tagged Cyt b559 subunit from transplastomic tobacco plants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1501-1509.	1.0	23
186	The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. Journal of Experimental Botany, 2008, 59, 3635-3647.	4.8	23
187	Transposition of a bacterial insertion sequence in chloroplasts. Plant Journal, 2009, 58, 423-436.	5.7	22
188	Replication of bacterial plasmids in the nucleus of the red alga Porphyridium purpureum. Nature Communications, 2018, 9, 3451.	12.8	22
189	The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochemical Journal, 2019, 476, 2743-2756.	3.7	22
190	Evolutionary origin of a plant mitochondrial group II intron from a reverse transcriptase/maturase-encoding ancestor. Journal of Plant Research, 2006, 119, 363-371.	2.4	21
191	Identification and characterization of a stable intermediate in photosystem I assembly in tobacco. Plant Journal, 2017, 90, 478-490.	5.7	21
192	Lycopene \hat{l}^2 -cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, 2021, 72, 2544-2569.	4.8	21
193	A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. Plant Cell, 2021, 33, 2583-2601.	6.6	21
194	Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Research, 2007, 35, 7256-7266.	14.5	20
195	A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation. Plant Molecular Biology, 2017, 93, 269-281.	3.9	20
196	Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiology, 2022, 188, 637-652.	4.8	20
197	The Diurnal Logic of the Expression of the Chloroplast Genome in Chlamydomonas reinhardtii. PLoS ONE, 2014, 9, e108760.	2.5	20
198	Multiple RNA Processing Defects and Impaired Chloroplast Function in Plants Deficient in the Organellar Protein-Only RNase P Enzyme. PLoS ONE, 2015, 10, e0120533.	2.5	19

#	Article	IF	Citations
199	Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts. Rna, 2007, 14, 217-224.	3.5	18
200	Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in <i> Arabidopsis thaliana </i> Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
201	Control of a sap-sucking insect pest by plastid-mediated RNA interference. Molecular Plant, 2022, 15, 1176-1191.	8.3	18
202	Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 2020, 10, 17219.	3.3	15
203	Knockdown of the plastid-encoded acetyl-CoA carboxylase gene uncovers functions in metabolism and development. Plant Physiology, 2021, 185, 1091-1110.	4.8	15
204	Extranuclear inheritance: Gene transfer out of plastids. , 2006, , 75-100.		15
205	Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth. PLoS ONE, 2019, 14, e0225064.	2.5	14
206	DNA base editing in nuclear and organellar genomes. Trends in Genetics, 2022, 38, 1147-1169.	6.7	14
207	Establishment of a Heterologous RNA Editing Event in Chloroplasts. Plant Physiology, 2019, 181, 891-900.	4.8	13
208	Inâ€depth characterization of <i>Trichoderma reesei</i> cellobiohydrolase <i>Tr</i> Cel7A produced in <i>Nicotiana benthamiana</i> reveals limitations of cellulase production in plants by hostâ€specific postâ€translational modifications. Plant Biotechnology Journal, 2020, 18, 631-643.	8.3	13
209	The Functions of Chloroplast Glutamyl-tRNA in Translation and Tetrapyrrole Biosynthesis. Plant Physiology, 2020, 183, 263-276.	4.8	13
210	Extranuclear Inheritance: Plastid Genetics: Manipulation of Plastid Genomes and Biotechnological Applications. Progress in Botany Fortschritte Der Botanik, 2000, , 76-90.	0.3	13
211	Heterologous expression of <i>Bixa orellana</i> cleavage dioxygenase 4â€"3 drives crocin but not bixin biosynthesis. Plant Physiology, 2022, 188, 1469-1482.	4.8	13
212	CMS-G from <i>Beta vulgaris</i> ssp. <i>maritima</i> is maintained in natural populations despite containing an atypical cytochrome <i>c</i> oxidase. Biochemical Journal, 2018, 475, 759-773.	3.7	12
213	Transcriptome analysis highlights nuclear control of chloroplast development in the shoot apex. Scientific Reports, 2018, 8, 8881.	3.3	12
214	Studying RNA Editing in Transgenic Chloroplasts of Higher Plants. , 2004, 265, 345-356.		11
215	Plastid Transformation in Tomato. Methods in Molecular Biology, 2014, 1132, 265-276.	0.9	11
216	Transplastomic approaches for metabolic engineering. Current Opinion in Plant Biology, 2022, 66, 102185.	7.1	11

#	Article	IF	Citations
217	Resistance to RNA interference by plantâ€derived doubleâ€stranded RNAs but not plantâ€derived short interfering RNAs in <i>Helicoverpa armigera</i>). Plant, Cell and Environment, 2022, 45, 1930-1941.	5.7	11
218	Engineering Chloroplasts for High-Level Constitutive or Inducible Transgene Expression. Methods in Molecular Biology, 2021, 2317, 77-94.	0.9	10
219	Extranuclear Inheritance: Functional Genomics in Chloroplasts. Progress in Botany Fortschritte Der Botanik, 2002, , 106-131.	0.3	10
220	Chloroplast Transformation in <i>Arabidopsis</i> Current Protocols, 2021, 1, e103.	2.9	8
221	Hepatitis C virus E2 envelope glycoprotein produced in <i>Nicotiana benthamiana ⟨i⟩ triggers humoral response with virusâ€neutralizing activity in vaccinated mice. Plant Biotechnology Journal, 2021, 19, 2027-2039.</i>	8.3	8
222	In Vivo Analysis of RNA Editing in Plastids. Methods in Molecular Biology, 2011, 718, 137-150.	0.9	7
223	Loopholes for smuggling DNA into pollen. Nature Plants, 2017, 3, 918-919.	9.3	7
224	Rapid functional activation of a horizontally transferred eukaryotic gene in a bacterial genome in the absence of selection. Nucleic Acids Research, 2019, 47, 6351-6359.	14.5	7
225	Correction of frameshift mutations in the <i>atpB</i> gene by translational recoding in chloroplasts of <i>Oenothera</i> and tobacco. Plant Cell, 2021, 33, 1682-1705.	6.6	6
226	The availability of neither D2 nor CP43 limits the biogenesis of photosystem II in tobacco. Plant Physiology, 2021, 185, 1111-1130.	4.8	6
227	De-etiolation-induced protein 1 (DEIP1) mediates assembly of the cytochrome b6f complex in Arabidopsis. Nature Communications, 2022, 13 , .	12.8	6
228	Extranuclear Inheritance: Plastidâ€"Nuclear Cooperation in Photosystem I Assembly in Photosynthetic Eukaryotes. Progress in Botany Fortschritte Der Botanik, 2008, , 89-115.	0.3	5
229	Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. Plant Cell Reports, 2022, 41, 1103-1114.	5.6	5
230	Comparison of mitochondrial gene expression and polysome loading in different tobacco tissues. Plant Methods, 2017, 13, 112.	4.3	3
231	Plastid Transformation in Tomato: A Vegetable Crop and Model Species. Methods in Molecular Biology, 2021, 2317, 217-228.	0.9	2
232	Editing, Polyadenylation and Degradation of mRNA in the Chloroplast. Advances in Photosynthesis and Respiration, 2001, , 121-136.	1.0	2
233	Extranuclear Inheritance: Chloroplast Proteomics. Progress in Botany Fortschritte Der Botanik, 2004, , 90-105.	0.3	2
234	Cloning and sequence analysis of tomato cpDNA fragments: towards developing homologous chloroplast transformation vectors. Brazilian Journal of Plant Physiology, 2005, 17, 239-246.	0.5	1

#	Article	IF	CITATIONS
235	Regulatory Function of Cytochrome b559 in Photosystem II. , 2008, , 563-567.		O
236	Extranuclear Inheritance: Plastid Genetics. , 1996, , 197-217.		0
237	Title is missing!. , 2019, 14, e0225064.		O
238	Title is missing!. , 2019, 14, e0225064.		0
239	Title is missing!. , 2019, 14, e0225064.		O
240	Title is missing!. , 2019, 14, e0225064.		0
241	Title is missing!. , 2019, 14, e0225064.		0
242	Title is missing!. , 2019, 14, e0225064.		0