
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1198261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Status of electronic waste recycling techniques: a review. Environmental Science and Pollution Research, 2018, 25, 16533-16547.	2.7	126
2	A novel spectrophotometric method for batch and flow injection determination of sulfite in beverages. Analytica Chimica Acta, 2006, 570, 232-239.	2.6	94
3	New lead (II) selective membrane potentiometric sensors based on chiral 2,6-bis-pyridinecarboximide derivatives. Talanta, 2003, 60, 81-91.	2.9	67
4	Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards. Separation and Purification Technology, 2020, 230, 115860.	3.9	64
5	Novel thiocyanate-selective membrane sensors based on di-, tetra-, and hexa-imidepyridine ionophores. Analytica Chimica Acta, 2003, 482, 9-18.	2.6	59
6	Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosensors and Bioelectronics, 2010, 26, 566-574.	5.3	54
7	A paper-based potentiometric sensing platform based on molecularly imprinted nanobeads for determination of bisphenol A. Analytical Methods, 2018, 10, 3890-3895.	1.3	54
8	Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta, 2005, 66, 1034-1041.	2.9	53
9	Novel Potentiometric Sensors of Molecular Imprinted Polymers for Specific Binding of Chlormequat. Electroanalysis, 2008, 20, 194-202.	1.5	53
10	A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor. Analytica Chimica Acta, 2009, 640, 75-81.	2.6	50
11	Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosensors and Bioelectronics, 2008, 24, 591-599.	5.3	47
12	Porous Activated Carbon from Lignocellulosic Agricultural Waste for the Removal of Acetampirid Pesticide from Aqueous Solutions. Molecules, 2020, 25, 2339.	1.7	43
13	Solid Contact Potentiometric Sensors Based on Host-Tailored Molecularly Imprinted Polymers for Creatine Assessment. International Journal of Electrochemical Science, 2016, 11, 8938-8949.	0.5	42
14	Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug. Materials Science and Engineering C, 2015, 54, 217-224.	3.8	39
15	Sulfadiazine-Potentiometric Sensors for Flow and Batch Determinations of Sulfadiazine in Drugs and Biological Fluids. Analytical Sciences, 2009, 25, 365-371.	0.8	38
16	Mimicking new receptors based on molecular imprinting and their application to potentiometric assessment of 2,4-dichlorophenol as a food taint. Food Chemistry, 2018, 250, 188-196.	4.2	37
17	Novel Biomedical Sensors for Flow Injection Potentiometric Determination of Creatinine in Human Serum. Electroanalysis, 2005, 17, 2246-2253.	1.5	35
18	New potentiometric sensors based on selective recognition sites for determination of ephedrine in some pharmaceuticals and biological fluids. Talanta, 2013, 103, 330-336.	2.9	33

#	Article	IF	CITATIONS
19	Flowâ€Through Assay of Quinine Using Solid Contact Potentiometric Sensors Based on Molecularly Imprinted Polymers. Electroanalysis, 2009, 21, 2701-2708.	1.5	32
20	New biomimetic sensors for the determination of tetracycline in biological samples: Batch and flow mode operations. Analytical Methods, 2010, 2, 2039.	1.3	32
21	Flow through potentiometric sensors based on molecularly imprinted polymers for selective monitoring of mepiquat residue, a quaternary ammonium herbicide. Analytical Methods, 2012, 4, 3007.	1.3	32
22	A Novel Poly(vinyl chloride) Matrix Membrane Sensor for Batch and Flow-Injection Determinations of Thiocyanate, Cyanide and Some Metal Ions. Analytical Sciences, 2009, 25, 911-917.	0.8	31
23	Biomimetic ciprofloxacin sensors made of molecularly imprinted network receptors for potential measurements. Analytical Methods, 2011, 3, 957.	1.3	31
24	Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum. Molecules, 2019, 24, 1539.	1.7	31
25	Continuous potentiometric monitoring of viagra (sildenafil) in pharmaceutical preparations using novel membrane sensors. Journal of Applied Electrochemistry, 2006, 36, 139-146.	1.5	30
26	Novel Dicyanoargentate Polymeric Membrane Sensors for Selective Determination of Cyanide Ions. Electroanalysis, 2004, 16, 298-303.	1.5	29
27	Mercury(II) Ion-Selective Polymeric Membrane Sensors for Analysis of Mercury in Hazardous Wastes. Analytical Sciences, 2006, 22, 877-881.	0.8	29
28	Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer. Sensors, 2019, 19, 3891.	2.1	27
29	All Solid-State Poly (Vinyl Chloride) Membrane Potentiometric Sensor Integrated with Nano-Beads Imprinted Polymers for Sensitive and Rapid Detection of Bispyribac Herbicide as Organic Pollutant. Molecules, 2019, 24, 712.	1.7	26
30	Development of microwave-assisted functionalized nanosilicas for instantaneous removal of heavy metals. Powder Technology, 2018, 326, 454-466.	2.1	25
31	FIA potentiometric system based on periodate polymeric membrane sensors for the assessment of ascorbic acid in commercial drinks. Food Chemistry, 2010, 120, 934-939.	4.2	23
32	Flow injection fluorimetric determination of chromium(VI) in electroplating baths by luminescence quenching of tris(2,2′-bipyridyl) ruthenium(II). Talanta, 2005, 67, 696-702.	2.9	21
33	Cost-effective and handmade paper-based potentiometric sensing platform for piperidine determination. Analytical Methods, 2018, 10, 5406-5415.	1.3	20
34	Novel Solid-State Potentiometric Sensors Using Polyaniline (PANI) as A Solid-Contact Transducer for Flucarbazone Herbicide Assessment. Polymers, 2019, 11, 1796.	2.0	20
35	A SnO2/CeO2 Nano-Composite Catalyst for Alizarin Dye Removal from Aqueous Solutions. Nanomaterials, 2020, 10, 254.	1.9	19
36	Conventional and planar chip sensors for potentiometric assay of uric acid in biological fluids using flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 341-348.	1.4	18

#	Article	IF	CITATIONS
37	Fast microwave-assisted sorption of heavy metals on the surface of nanosilica-functionalized-glycine and reduced glutathione. Bioresource Technology, 2018, 264, 228-237.	4.8	18
38	Paper-based potentiometric sensing devices modified with chemically reduced graphene oxide (CRGO) for trace level determination of pholcodine (opiate derivative drug). RSC Advances, 2021, 11, 12227-12234.	1.7	18
39	Tailor-Made Specific Recognition of Cyromazine Pesticide Integrated in a Potentiometric Strip Cell for Environmental and Food Analysis. Polymers, 2019, 11, 1526.	2.0	17
40	Screen-printed Microsensors Using Polyoctyl-thiophene (POT) Conducting Polymer As Solid Transducer for Ultratrace Determination of Azides. Molecules, 2019, 24, 1392.	1.7	17
41	Survey on the Integration of Molecularly Imprinted Polymers as Artificial Receptors in Potentiometric Transducers for pharmaceutical Drugs. International Journal of Electrochemical Science, 2019, 14, 2085-2124.	0.5	16
42	Synthesis and Characterization of CuFe2O4 Nanoparticles Modified with Polythiophene: Applications to Mercuric Ions Removal. Nanomaterials, 2020, 10, 586.	1.9	16
43	Paper-Based Potentiometric Sensors for Nicotine Determination in Smokers' Sweat. ACS Omega, 2021, 6, 11340-11347.	1.6	16
44	Biomimetic Sensor Potentiometric System for Doxycycline Antibiotic Using a Molecularly Imprinted Polymer as an Artificial Recognition Element. Sensor Letters, 2011, 9, 1654-1660.	0.4	16
45	Mimicking a Receptor for Cyanide Ion Based on Ion Imprinting and Its Applications in Potential Transduction. Electroanalysis, 2012, 24, 1409-1415.	1.5	15
46	Screen-Printed Sensor Based on Potentiometric Transduction for Free Bilirubin Detection as a Biomarker for Hyperbilirubinemia Diagnosis. Chemosensors, 2020, 8, 86.	1.8	15
47	Paper Strip and Ceramic Potentiometric Platforms Modified with Nano-Sized Polyaniline (PANi) for Static and Hydrodynamic Monitoring of Chromium in Industrial Samples. Molecules, 2020, 25, 629.	1.7	15
48	Molecularly-Imprinted Materials for Potentiometric Transduction: Application to the Antibiotic Enrofloxacin. Analytical Letters, 2011, 44, 2107-2123.	1.0	14
49	Single-Walled Carbon Nanotubes (SWCNTs) as Solid-Contact in All-Solid-State Perchlorate ISEs: Applications to Fireworks and Propellants Analysis. Sensors, 2019, 19, 2697.	2.1	14
50	New potentiometric sensors based on two competitive recognition sites for determining tetracycline residues using flow-through system. Procedia Engineering, 2010, 5, 1200-1203.	1.2	13
51	New potentiometric transducer based on a Mn(II) [2-formylquinoline thiosemicarbazone] complex for static and hydrodynamic assessment of azides. Talanta, 2015, 144, 1085-1090.	2.9	13
52	CuFe2O4/Polyaniline (PANI) Nanocomposite for the Hazard Mercuric Ion Removal: Synthesis, Characterization, and Adsorption Properties Study. Molecules, 2020, 25, 2721.	1.7	13
53	All-Solid-State Potentiometric Ion-Sensors Based on Tailored Imprinted Polymers for Pholcodine Determination. Polymers, 2021, 13, 1192.	2.0	13
54	Response Characteristics of Copper‧elective Polymer Membrane Electrodes Based on a Newly Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Electroanalysis, 2010, 22, 2453-2459.	1.5	12

#	Article	IF	CITATIONS
55	Imprinted Polymeric Beads-Based Screen-Printed Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) for Selective Recognition of Fluoxetine. Nanomaterials, 2020, 10, 572.	1.9	12
56	Single-Piece Solid Contact Cu2+-Selective Electrodes Based on a Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Molecules, 2019, 24, 920.	1.7	11
57	Efficient and fast microwave sorption of heavy metals on nanosilica sorbents-microwave immobilized-vitamin C and vitamin L1. Journal of Environmental Chemical Engineering, 2019, 7, 102850.	3.3	11
58	Removal of barium and strontium from wastewater and radioactive wastes using a green bioadsorbent, Salvadora persica (Miswak). , 0, 192, 306-314.		11
59	Novel Aminoacridine Sensors Based on Molecularly Imprinted Hybrid Polymeric Membranes for Static and Hydrodynamic Drug Quality Control Monitoring. Materials, 2019, 12, 3327.	1.3	10
60	Solid-Contact Potentiometric Sensors Based on Stimulus-Responsive Imprinted Polymers for Reversible Detection of Neutral Dopamine. Polymers, 2020, 12, 1406.	2.0	10
61	Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination. Biomolecules, 2020, 10, 251.	1.8	10
62	Batch and hydrodynamic monitoring of vitamin C using novel periodate selective sensors based on a newly synthesized Ni(II)-Schiff bases complexes as a neutral receptors. Talanta, 2010, 80, 1356-1363.	2.9	9
63	Flowâ€Through Potentiometric Sensors for Alizarin Red S Dye and Their Application for Aluminum Determination. Journal of the Chinese Chemical Society, 2014, 61, 295-302.	0.8	9
64	Fabrication of novel sensors based on a synthesized acyclic pyridine derivative ionophore for potentiometric monitoring of copper. Analytical Methods, 2014, 6, 7814-7822.	1.3	9
65	Novel Potentiometric 2,6-Dichlorophenolindo-phenolate (DCPIP) Membrane-Based Sensors: Assessment of Their Input in the Determination of Total Phenolics and Ascorbic Acid in Beverages. Sensors, 2019, 19, 2058.	2.1	9
66	Integrated all-solid-state sulfite sensors modified with two different ion-to-electron transducers: rapid assessment of sulfite in beverages. RSC Advances, 2021, 11, 3783-3791.	1.7	9
67	Novel magnetic nickel ferrite nanoparticles modified with poly(aniline- <i>co-o</i> -toluidine) for the removal of hazardous 2,4-dichlorophenol pollutant from aqueous solutions. RSC Advances, 2022, 12, 7433-7445.	1.7	9
68	Non-Equilibrium Potential Responses towards Neutral Orcinol Using All-Solid-State Potentiometric Sensors Integrated with Molecularly Imprinted Polymers. Polymers, 2019, 11, 1232.	2.0	8
69	Gold Plate Electrodes Functionalized by Multiwall Carbon Nanotube Film for Potentiometric Thallium(I) Detection. Nanomaterials, 2019, 9, 1160.	1.9	8
70	All-Solid-State Calcium Sensors Modified with Polypyrrol (PPY) and Graphene Oxide (GO) as Solid-Contact Ion-to-Electron Transducers. Chemosensors, 2020, 8, 93.	1.8	8
71	Validation of a Novel Potentiometric Method Based on a Polymeric PVC Membrane Sensor Integrated with Tailored Receptors for the Antileukemia Drug Cytarabine. Polymers, 2020, 12, 1343.	2.0	8
72	Modified Screen-Printed Potentiometric Sensors based on Man-Tailored Biomimetics for Diquat Herbicide Determination. International Journal of Environmental Research and Public Health, 2020, 17, 1138.	1.2	8

#	Article	IF	CITATIONS
73	Low-cost potentiometric paper-based analytical device based on newly synthesized macrocyclic pyrido-pentapeptide derivatives as novel ionophores for point-of-care copper(<scp>ii</scp>) determination. RSC Advances, 2021, 11, 27174-27182.	1.7	8
74	Novel Potentiometric Screen-printed Carbon Electrodes for Bisphenol S Detection in Commercial Plastic Samples. Analytical Sciences, 2020, 36, 1359-1364.	0.8	8
75	A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements. International Journal of Electrochemistry, 2011, 2011, 1-10.	2.4	7
76	Pre-Concentration Based on Cloud Point Extraction for Ultra-Trace Monitoring of Lead (II) Using Flame Atomic Absorption Spectrometry. Applied Sciences (Switzerland), 2019, 9, 4752.	1.3	7
77	Single-Piece All-Solid-State Potential Ion-Selective Electrodes Integrated with Molecularly Imprinted Polymers (MIPs) for Neutral 2,4-Dichlorophenol Assessment. Materials, 2019, 12, 2924.	1.3	7
78	Paper-Based Potentiometric Device for Rapid and Selective Determination of Salicylhydroxamate as a Urinary Struvite Stone Inhibitor. ACS Omega, 2021, 6, 27755-27762.	1.6	7
79	Removal of Uranium-238, Thorium-232, and Potassium-40 from Wastewater via Adsorption on Multiwalled Carbon Nanotubes. ACS Omega, 2022, 7, 12342-12353.	1.6	7
80	Potentiometric PVC-Membrane-Based Sensor for Dimethylamine Assessment Using A Molecularly Imprinted Polymer as A Sensory Recognition Element. Polymers, 2019, 11, 1695.	2.0	6
81	Liquid Contact-Selective Potentiometric Sensor Based on Imprinted Polymeric Beads Towards 1712-Estradiol Determination. Polymers, 2020, 12, 1506.	2.0	6
82	New Potentiometric Sensors for Picrate Determination Using Flowâ€Through System: Application to Kinetic Assessment of Se(IV). Electroanalysis, 2013, 25, 793-801.	1.5	5
83	Solid-State Membrane Sensors Based on Man-Tailored Biomimetic Receptors for Selective Recognition of Isoproturon and Diuron Herbicides. Membranes, 2020, 10, 279.	1.4	5
84	Cost-Effective Potentiometric Platforms Modified with Multi-Walled Carbon Nanotubes (MWCNTs) and Based on Imprinted Receptors for Fluvoxamine Assessment. Polymers, 2020, 12, 673.	2.0	5
85	Solvent polarity indicators based on bithiophene carboxamidine hydrochloride salt derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112933.	2.0	5
86	An all-solid-state potentiometric sensor modified with multi-walled carbon nanotubes (MWCNTs) for silicate assessment and water-quality testing. Analytical Methods, 2021, 13, 1495-1501.	1.3	5
87	Solid-Contact Potentiometric Sensors Based on Main-Tailored Bio-Mimics for Trace Detection of Harmine Hallucinogen in Urine Specimens. Molecules, 2021, 26, 324.	1.7	5
88	A Novel Flowâ€Through Planar Solid Contact Sensor for the Determination of Lead with Potentiometric Anionic Response. Electroanalysis, 2007, 19, 2419-2427.	1.5	4
89	Development of a Novel Automatic Potentiometric System for Determination of Selenium and Its Application in Pharmaceutical Formulations and Anodic Slime. Electroanalysis, 2008, 20, 1016-1023.	1.5	4
90	Response characteristics of lead-selective membrane sensors based on a newly synthesized quinoxaline derivatives as neutral carrier ionophores. Ionics, 2017, 23, 3497-3506.	1.2	4

#	Article	IF	CITATIONS
91	Solid-contact potentiometric sensors for reliable automatic quantification of 2,4-dichlorophenol (2,4-DCP) as a food taint. Measurement Science and Technology, 2018, 29, 105102.	1.4	4
92	A New Validated Potentiometric Method for Sulfite Assay in Beverages Using Cobalt(II) Phthalocyanine as a Sensory Recognition Element. Molecules, 2020, 25, 3076.	1.7	4
93	Effective screen-printed potentiometric devices modified with carbon nanotubes for the detection of chlorogenic acid: application to food quality monitoring. RSC Advances, 2021, 11, 38774-38781.	1.7	4
94	All-Solid-State Potentiometric Platforms Modified with a Multi-Walled Carbon Nanotubes for Fluoxetine Determination. Membranes, 2022, 12, 446.	1.4	3
95	New Potentiometric Screen-Printed Platforms Modified with Reduced Graphene Oxide and Based on Man-Made Imprinted Receptors for Caffeine Assessment. Polymers, 2022, 14, 1942.	2.0	3
96	Automatic potentiometric system for quantification of three imidazole derivatives based on new polymeric PVC membrane sensors. Ionics, 2017, 23, 2201-2211.	1.2	2
97	Novel Flowâ€ŧhrough Potentiometric System for Dimethyamine Assessment Using New Ion Exchangers Dopedâ€polymeric Membrane Sensors. Electroanalysis, 2018, 30, 2635-2643.	1.5	2
98	Rapid and Accurate Validated Potentiometric Method for Bispyribac Herbicide Assessment in Rice and Agricultural Wastewater. Water (Switzerland), 2020, 12, 2216.	1.2	2
99	Potentiometric detection of low-levels of sulfamethazine in milk and pharmaceutical formulations using novel plastic membrane sensors. Journal of Electrochemical Science and Engineering, 2018, 9, 17-26.	1.6	2
100	Novel Validated Analytical Method Based on Potentiometric Transduction for the Determination of Citicoline Psychostimulant/Nootropic Agent. Molecules, 2020, 25, 3512.	1.7	1
101	Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological Samples. Journal of AOAC INTERNATIONAL, 2021, 104, 113-121.	0.7	0
102	POTENTIOMETRIC STUDY FOR RAPID CONTINUOUS MONITORING OF TRACE LEVEL THIOCYANATE USING SOLID AND CONVENTIONAL TYPES PVC MEMBRANE SENSORS. European Chemical Bulletin, 2018, 7, 182.	2.7	0