Yunki Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11982460/publications.pdf Version: 2024-02-01

YUNKILEE

#	Article	IF	CITATIONS
1	In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomaterialia, 2020, 103, 142-152.	8.3	154
2	Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 2016, 38, 59-68.	8.3	142
3	In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B, 2013, 1, 2407.	5.8	108
4	Horseradish peroxidase-catalysed <i>in situ</i> -forming hydrogels for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1225-1232.	2.7	102
5	Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides. ACS Applied Materials & Interfaces, 2016, 8, 4336-4346.	8.0	98
6	Synthesis and Characterizations of In Situ Cross-Linkable Gelatin and 4-Arm-PPO-PEO Hybrid Hydrogels via Enzymatic Reaction for Tissue Regenerative Medicine. Biomacromolecules, 2012, 13, 604-611.	5.4	81
7	Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomaterialia, 2018, 67, 66-78.	8.3	75
8	In Situ Forming and H ₂ O ₂ -Releasing Hydrogels for Treatment of Drug-Resistant Bacterial Infections. ACS Applied Materials & Interfaces, 2017, 9, 16890-16899.	8.0	73
9	In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of Mesenchymal Stem Cells. Advanced Functional Materials, 2014, 24, 6771-6781.	14.9	69
10	Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. Journal of Materials Chemistry B, 2014, 2, 7712-7718.	5.8	68
11	Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. Journal of Controlled Release, 2017, 259, 115-127.	9.9	68
12	In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. Journal of Materials Chemistry B, 2017, 5, 757-764.	5.8	68
13	<i>In Situ</i> SVVYGLR Peptide Conjugation into Injectable Gelatin-Poly(ethylene glycol)-Tyramine Hydrogel via Enzyme-Mediated Reaction for Enhancement of Endothelial Cell Activity and Neo-Vascularization. Bioconjugate Chemistry, 2012, 23, 2042-2050.	3.6	55
14	Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomaterialia, 2016, 35, 109-117.	8.3	52
15	Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. Journal of Industrial and Engineering Chemistry, 2019, 78, 34-52.	5.8	47
16	Catechol-rich gelatin hydrogels in situ hybridizations with silver nanoparticle for enhanced antibacterial activity. Materials Science and Engineering C, 2018, 92, 52-60.	7.3	46
17	A hydrogel matrix prolongs persistence and promotes specific localization of an oncolytic adenovirus in a tumor by restricting nonspecific shedding and an antiviral immune response. Biomaterials, 2017, 147, 26-38.	11.4	43
18	Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomaterialia, 2017, 61, 169-179.	8.3	43

ΥUNKI LEE

#	Article	IF	CITATIONS
19	Human hair keratin-based hydrogels as dynamic matrices for facilitating wound healing. Journal of Industrial and Engineering Chemistry, 2019, 73, 142-151.	5.8	42
20	Oxidized cyclodextrin-functionalized injectable gelatin hydrogels as a new platform for tissue-adhesive hydrophobic drug delivery. RSC Advances, 2017, 7, 34053-34062.	3.6	39
21	Hydrogen Peroxide–Releasing Hydrogels for Enhanced Endothelial Cell Activities and Neovascularization. ACS Applied Materials & Interfaces, 2018, 10, 18372-18379.	8.0	38
22	Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomaterials Research, 2018, 22, 3.	6.9	36
23	Supramolecular Cyclodextrin Supplements to Improve the Tissue Adhesion Strength of Gelatin Bioglues. ACS Macro Letters, 2017, 6, 83-88.	4.8	32
24	Injectable and mechanically robust 4-arm PPO–PEO/graphene oxide composite hydrogels for biomedical applications. Chemical Communications, 2015, 51, 8876-8879.	4.1	31
25	<i>In situ</i> forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation. Applied Spectroscopy Reviews, 2016, 51, 527-539.	6.7	31
26	Enzymatically Crosslinkable Hyaluronic Acid-Gelatin Hybrid Hydrogels as Potential Bioinks for Tissue Regeneration. Macromolecular Research, 2020, 28, 400-406.	2.4	29
27	Enhanced Cellular Activity in Gelatinâ€Poly(Ethylene Glycol) Hydrogels without Compromising Gel Stiffness. Macromolecular Bioscience, 2016, 16, 334-340.	4.1	27
28	Recent strategies to design vascular theranostic nanoparticles. Nanotheranostics, 2017, 1, 166-177.	5.2	27
29	Heparin nanogel-containing liposomes for intracellular RNase delivery. Macromolecular Research, 2015, 23, 765-769.	2.4	26
30	Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomaterialia, 2017, 50, 234-248.	8.3	26
31	Enhanced tissue adhesiveness of injectable gelatin hydrogels through dual catalytic activity of horseradish peroxidase. Biopolymers, 2018, 109, e23077.	2.4	26
32	Macro/Nano-Gel Composite as an Injectable and Bioactive Bulking Material for the Treatment of Urinary Incontinence. Biomacromolecules, 2014, 15, 1979-1984.	5.4	25
33	Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular Microenvironments. Macromolecular Bioscience, 2016, 16, 1570-1576.	4.1	23
34	Calcium peroxide-mediated <i>in situ</i> formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. Journal of Materials Chemistry B, 2020, 8, 11033-11043.	5.8	23
35	Tyrosinase-Mediated Surface Coimmobilization of Heparin and Silver Nanoparticles for Antithrombotic and Antimicrobial Activities. ACS Applied Materials & Interfaces, 2017, 9, 20376-20384.	8.0	21
36	Tonsil-derived mesenchymal stem cell-embedded in situ crosslinkable gelatin hydrogel therapy recovers postmenopausal osteoporosis through bone regeneration. PLoS ONE, 2018, 13, e0200111.	2.5	21

ΥUNKI LEE

#	Article	IF	CITATIONS
37	Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds. Biomaterials Research, 2016, 20, 2.	6.9	20
38	MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels To Promote Myocardial Repair. ACS Applied Bio Materials, 2020, 3, 1646-1655.	4.6	18
39	In situ formation of enzyme-free hydrogels via ferromagnetic microbead-assisted enzymatic cross-linking. Chemical Communications, 2014, 50, 13710-13713.	4.1	16
40	A novel calciumâ€accumulating peptide/gelatin <i>in situ</i> forming hydrogel for enhanced bone regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 531-542.	4.0	16
41	Oxidized Alginate Supplemented Gelatin Hydrogels for the In Situ Formation of Wound Dressing with High Antibacterial Activity. Macromolecular Research, 2019, 27, 811-820.	2.4	16
42	Synthesis and characterization of in situ gellable poly(glycerol sebacate)-co-poly(ethylene glycol) polymers. Macromolecular Research, 2017, 25, 85-91.	2.4	15
43	In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2017, 18, 1705.	4.1	14
44	Sustained release of parathyroid hormone via <i>in situ</i> crossâ€linking gelatin hydrogels improves the therapeutic potential of tonsilâ€derived mesenchymal stem cells for hypoparathyroidism. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1747-e1756.	2.7	14
45	Heparin-functionalized polymer graft surface eluting MK2 inhibitory peptide to improve hemocompatibility and anti-neointimal activity. Journal of Controlled Release, 2017, 266, 321-330.	9.9	12
46	Facile surface PEGylation via tyrosinase-catalyzed oxidative reaction for the preparation of non-fouling surfaces. Colloids and Surfaces B: Biointerfaces, 2013, 102, 585-589.	5.0	11
47	Biomaterialâ€Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromolecular Rapid Communications, 2016, 37, 1860-1880.	3.9	9
48	Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. Journal of Biomaterials Applications, 2020, 34, 1216-1226.	2.4	9
49	Aging Donor-Derived Human Mesenchymal Stem Cells Exhibit Reduced Reactive Oxygen Species Loads and Increased Differentiation Potential Following Serial Expansion on a PEG-PCL Copolymer Substrate. International Journal of Molecular Sciences, 2018, 19, 359.	4.1	7
50	Engineered Heterochronic Parabiosis in 3D Microphysiological System for Identification of Muscle Rejuvenating Factors. Advanced Functional Materials, 2020, 30, 2002924.	14.9	5
51	Scaffolds for parathyroid tissue engineering. , 2019, , 787-807.		1
52	Replicating heterochronic parabiosis on a 3D microphysiological circuit to study the systemic regulation of aging muscle. FASEB Journal, 2019, 33, 701.9.	0.5	0