
Pranab Kumar Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11981084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological attenuation of arsenic and nitrate in a suspended growth denitrifying-sulphidogenic bioreactor and stability check of arsenic-laden biosolids. Environmental Technology (United) Tj ETQq1 1 0.784314	፼₽T/Ov	erslock 10 Tf
2	Development of a sulfidogenic bioreactor system for removal of co-existent selenium, iron and nitrate from drinking water sources. Journal of Environmental Management, 2020, 254, 109757.	7.8	4
3	Bacterially-assisted recovery of cadmium and nickel as their metal sulfide nanoparticles from spent Ni–Cd battery via hydrometallurgical route. Journal of Environmental Management, 2020, 261, 110113.	7.8	18
4	Concurrent removal of nitrate, arsenic and iron from simulated and real-life groundwater to meet drinking water standards: Effects of operational and environmental parameters. Journal of Environmental Management, 2019, 235, 9-18.	7.8	6
5	Bio-attenuation of arsenic and iron coupled with nitrate remediation in multi-oxyanionic system: Batch and column studies. Journal of Hazardous Materials, 2019, 375, 182-190.	12.4	9
6	Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor. Journal of Hazardous Materials, 2019, 369, 309-317.	12.4	4
7	Production of composite clay bricks: A value-added solution to hazardous sludge through effective heavy metal fixation. Construction and Building Materials, 2019, 201, 391-400.	7.2	15
8	Stability against arsenic leaching from biogenic arsenosulphides generated under reduced environment. Journal of Cleaner Production, 2019, 208, 1557-1562.	9.3	6
9	Investigation on stability and leaching characteristics of mixtures of biogenic arsenosulphides and iron sulphides formed under reduced conditions. Journal of Hazardous Materials, 2018, 353, 320-328.	12.4	10
10	Simultaneous removal of arsenic, iron and nitrate in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time. Journal of Cleaner Production, 2018, 186, 1011-1020.	9.3	18
11	Simultaneous removal of arsenic and nitrate in absence of iron in an attached growth bioreactor to meet drinking water standards: Importance of sulphate and empty bed contact time. Journal of Cleaner Production, 2018, 186, 304-312.	9.3	32
12	Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. Journal of Hazardous Materials, 2018, 341, 207-217.	12.4	28
13	Critical analysis and valorization potential of battery industry sludge: Speciation, risk assessment and metal recovery. Journal of Cleaner Production, 2018, 171, 820-830.	9.3	17
14	Synergistic effect using a functionalized dual-site adsorbent in Pb(II) and Cu(II) uptake and comparison with mono-site resins. Journal of Water Process Engineering, 2017, 18, 92-101.	5.6	8
15	Effects of different environmental and operating conditions on sulfate bioreduction in shake flasks by mixed bacterial culture predominantly <i>Pseudomonas aeruginosa</i> . Desalination and Water Treatment, 2016, 57, 17911-17921.	1.0	3
16	Synthesis of a functionalized fibrous adsorbent of high uptake capacity: a study on Pb(<scp>ii</scp>) uptake and simple acidic site model development. RSC Advances, 2016, 6, 5341-5349.	3.6	8
17	Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process. Environmental Technology (United Kingdom), 2014, 35, 2272-2279.	2.2	79
18	Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor. Biodegradation, 2014, 25, 265-276.	3.0	13

PRANAB KUMAR GHOSH

#	Article	IF	CITATIONS
19	Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor. Biodegradation, 2014, 25, 705-718.	3.0	12
20	Sulfate bioreduction and elemental sulfur formation in a packed bed reactor. Journal of Environmental Chemical Engineering, 2014, 2, 1287-1293.	6.7	19
21	Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6T in a newly designed packed bed reactor. Journal of Bioscience and Bioengineering, 2013, 115, 182-188.	2.2	21
22	Electrokinetic Migration of Nickel [Ni(II)] in Contaminated Sludge. Journal of Hazardous, Toxic, and Radioactive Waste, 2012, 16, 201-206.	2.0	4
23	Biodegradation of p-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor. Journal of Hazardous Materials, 2011, 190, 729-737.	12.4	34
24	Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons. Journal of Hazardous Materials, 2009, 171, 116-122.	12.4	118
25	Total dissolved solids removal by electrochemical ion exchange (EIX) process. Electrochimica Acta, 2008, 54, 474-483.	5.2	27
26	Management of Atrazine Bearing Wastewater Using an Upflow Anaerobic Sludge Blanket Reactor–Adsorption System. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 2005, 9, 112-121.	0.4	9
27	Performance Evaluation of Waste Activated Carbon on Atrazine Removal from Contaminated Water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2005, 40, 425-441.	1.5	22
28	Performance of Waste Activated Carbon as a Low-Cost Adsorbent for the Removal of Anionic Surfactant from Aquatic Environment. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 381-397.	1.7	62