List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11980438/publications.pdf Version: 2024-02-01

Ηλι-Sτιι Υι

#	Article	IF	CITATIONS
1	The uniqueness of the flow liquefaction line in the submarine bi-directional simple shear condition. Marine Georesources and Geotechnology, 2023, 41, 576-587.	2.1	1
2	Pullout behaviour of inclined shallow plate anchors in sand. Canadian Geotechnical Journal, 2022, 59, 239-253.	2.8	13
3	Closed-form solutions for large strain analysis of cavity contraction in a bounded Mohr-Coulomb medium. European Journal of Environmental and Civil Engineering, 2022, 26, 4548-4575.	2.1	5
4	Plasticity solutions for ground deformation prediction of shallow tunnels in undrained clay. Tunnelling and Underground Space Technology, 2022, 120, 104277.	6.2	8
5	Undrained cavity expansion in anisotropic soils with isotropic and frictional destructuration. Acta Geotechnica, 2022, 17, 2325-2346.	5.7	12
6	Closure to "Uplift Behavior of Pipes and Strip Plate Anchors in Sand―by Pei-Zhi Zhuang, Hong-Ya Yue, Xiu-Guang Song, He Yang, and Hai-Sui Yu. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	3.0	0
7	Liquefaction and post-liquefaction of granular material under multi-directional cyclic loading. Marine Georesources and Geotechnology, 2021, 39, 1261-1272.	2.1	6
8	Loading and unloading of a thick-walled cylinder of critical-state soils: large strain analysis with applications. Acta Geotechnica, 2021, 16, 237-261.	5.7	11
9	On the evolution law of a contact normal-based fabric tensor for granular materials. Computers and Geotechnics, 2021, 132, 103857.	4.7	4
10	Macro- and micro-mechanical investigations on liquefaction behaviour of granular material under bi-directional simple shear. Granular Matter, 2021, 23, 1.	2.2	1
11	Shakedown analysis and its application in pavement and railway engineering. Computers and Geotechnics, 2021, 138, 104281.	4.7	10
12	Uplift Behavior of Pipes and Strip Plate Anchors in Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	12
13	Shakedown Limits of Slab Track Substructures and Their Implications for Design. Lecture Notes in Applied and Computational Mechanics, 2021, , 211-225.	2.2	0
14	Constitutive modelling of granular materials using a contact normal-based fabric tensor. Acta Geotechnica, 2020, 15, 1125-1151.	5.7	23
15	A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 1053-1076.	3.3	22
16	Modelling the simple shear behaviour of clay considering principal stress rotation. Mechanics Research Communications, 2020, 103, 103474.	1.8	4
17	Benchmark solutions of large-strain cavity contraction for deep tunnel convergence in geomaterials. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12, 596-607.	8.1	15
18	Noncoaxial Theory of Plasticity Incorporating Initial Soil Anisotropy. International Journal of Geomechanics, 2019, 19, .	2.7	5

#	Article	IF	CITATIONS
19	LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modeling. Acta Geotechnica, 2019, 14, 1269-1287.	5.7	76
20	A DEM investigation of water-bridged granular materials at the critical state. Computational Particle Mechanics, 2019, 6, 637-655.	3.0	5
21	DEM and experimental study of bi-directional simple shear. Granular Matter, 2019, 21, 1.	2.2	16
22	Twoâ€dimensional elastoplastic analysis of cylindrical cavity problems in Tresca materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43, 1612-1633.	3.3	6
23	A unified critical state model for geomaterials with an application to tunnelling. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11, 464-480.	8.1	15
24	Effects of the principal stress rotation in numerical simulations of geotechnical laboratory cyclic tests. Computers and Geotechnics, 2019, 109, 220-228.	4.7	4
25	Comparison of yield-vertex tangential loading and principal stress rotational loading. Computers and Geotechnics, 2019, 108, 88-94.	4.7	1
26	On a fabric evolution law incorporating the effects of b-value. Computers and Geotechnics, 2019, 105, 142-154.	4.7	22
27	Effect of Material Stiffness Variation on Shakedown Solutions of Soils Under Moving Loads. Sustainable Civil Infrastructures, 2019, , 73-82.	0.2	0
28	Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems. Computers and Geotechnics, 2018, 99, 80-92.	4.7	29
29	A micro–macro investigation of the capillary strengthening effect in wet granular materials. Acta Geotechnica, 2018, 13, 513-533.	5.7	36
30	Theoretical Analysis of Pressure-Dependent <i>K</i> ₀ for Normally Consolidated Clays Using Critical State Soil Models. International Journal of Geomechanics, 2018, 18, .	2.7	7
31	Shakedown for slab track substructures with stiffness variation. Geotechnical Research, 2018, 5, 31-38.	1.4	13
32	Drained cavity expansion analysis with a unified state parameter model for clay and sand. Canadian Geotechnical Journal, 2018, 55, 1029-1040.	2.8	33
33	Size-dependent finite strain analysis of cavity expansion in frictional materials. International Journal of Solids and Structures, 2018, 150, 282-294.	2.7	6
34	Principal Stress Rotation under Bidirectional Simple Shear Loadings. KSCE Journal of Civil Engineering, 2018, 22, 1651-1660.	1.9	34
35	A GPU-Accelerated Three-Dimensional SPH Solver for Geotechnical Applications. Springer Series in Geomechanics and Geoengineering, 2018, , 398-401.	0.1	2
36	Effects of principal stress rotation on the wave–seabed interactions. Acta Geotechnica, 2017, 12, 97-106.	5.7	25

#	Article	IF	CITATIONS
37	Monotonic Direct Simple Shear Tests on Sand under Multidirectional Loading. International Journal of Geomechanics, 2017, 17, .	2.7	32
38	Stress–Force–Fabric Relationship for Unsaturated Granular Materials in Pendular States. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	21
39	A Binary-Medium Constitutive Model for Artificially Structured Soils Based on the Disturbed State Concept and Homogenization Theory. International Journal of Geomechanics, 2017, 17, .	2.7	44
40	Correlations between the stress paths of a monotonic test and a cyclic test under the same initial conditions. Soil Dynamics and Earthquake Engineering, 2017, 101, 153-156.	3.8	30
41	Interpretation of Cone Penetration Test Data in Layered Soils Using Cavity Expansion Analysis. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2017, 143, .	3.0	42
42	Multiphase SPH modeling of free surface flow in porous media with variable porosity. Computers and Geotechnics, 2017, 81, 239-248.	4.7	71
43	Undrained Cavity-Contraction Analysis for Prediction of Soil Behavior around Tunnels. International Journal of Geomechanics, 2017, 17, .	2.7	45
44	Numerical simulation of earthquake-induced liquefactions considering the principal stress rotation. Soil Dynamics and Earthquake Engineering, 2016, 90, 432-441.	3.8	10
45	A Comparison between a Shakedown Design Approach and the Analytical Design Approach in the UK for Flexible Road Pavements. Procedia Engineering, 2016, 143, 971-978.	1.2	2
46	Undrained Soil Behavior under Bidirectional Shear. , 2016, , .		2
47	Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes. Granular Matter, 2016, 18, 1.	2.2	27
48	Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules. Computers and Geotechnics, 2016, 78, 218-226.	4.7	32
49	Experimental investigation on the deformation characteristics of granular materials under drained rotational shear. Geomechanics and Geoengineering, 2016, 11, 47-63.	1.8	20
50	Experimental study of anisotropy and non-coaxiality of granular solids. Granular Matter, 2015, 17, 189-196.	2.2	25
51	Discrete Element Modeling of Cone Penetration Tests Incorporating Particle Shape and Crushing. International Journal of Geomechanics, 2015, 15, .	2.7	44
52	A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotechnica, 2015, 10, 703-717.	5.7	105
53	Three-Dimensional Shakedown Solutions for Cross-Anisotropic Cohesive-Frictional Materials Under Moving Loads. , 2015, , 299-313.		3
54	Plasticity Model for Hybrid Fiber-Reinforced Concrete under True Triaxial Compression. Journal of Engineering Mechanics - ASCE, 2014, 140, 393-405.	2.9	36

#	Article	IF	CITATIONS
55	Discrete element modelling of material nonâ€coaxiality in simple shear flows. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 615-635.	3.3	37
56	Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 331-348.	3.3	33
57	Shakedown of Layered Pavements under Repeated Moving Loads. , 2014, , .		1
58	Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation. Composite Structures, 2014, 111, 497-509.	5.8	64
59	Elasticâ€plastic solutions for expanding cavities embedded in two different cohesiveâ€frictional materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 961-977.	3.3	35
60	Fabric, force and strength anisotropies in granular materials: a micromechanical insight. Acta Mechanica, 2014, 225, 2345-2362.	2.1	27
61	A virtual experiment technique on the elementary behaviour of granular materials with discrete element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 75-96.	3.3	32
62	Simple shear in 3D DEM polyhedral particles and in a simplified 2D continuum model. Granular Matter, 2013, 15, 595-606.	2.2	15
63	A kinematic hardening soil model considering the principal stress rotation. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37, 2106-2134.	3.3	45
64	Shakedown analysis for design of flexible pavements under moving loads. Road Materials and Pavement Design, 2013, 14, 703-722.	4.0	34
65	Micromechanics of deformation non-coaxiality in granular materials. , 2013, , .		2
66	Finite Element Computations of Yield Vertex Non-Coaxial Models. , 2012, , .		0
67	Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads. International Journal of Solids and Structures, 2012, 49, 3797-3807.	2.7	63
68	Closure to "Two-Dimensional Discrete Element Theory for Rough Particles―by Mingjing Jiang, Serge Leroueil, Hehua Zhu, Hai-Sui Yu, and Jean-Marie Konrad. International Journal of Geomechanics, 2011, 11, 414-415.	2.7	2
69	Implicit and explicit procedures for the yield vertex non-coaxial theory. Computers and Geotechnics, 2011, 38, 751-755.	4.7	10
70	Numerical aspects of non-coaxial model implementations. Computers and Geotechnics, 2010, 37, 93-102.	4.7	16
71	Influence of loading direction on the behavior of anisotropic granular materials. International Journal of Engineering Science, 2009, 47, 1284-1296.	5.0	46
72	Two-Dimensional Discrete Element Theory for Rough Particles. International Journal of Geomechanics, 2009, 9, 20-33.	2.7	47

#	Article	IF	CITATIONS
73	A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. International Journal for Numerical Methods in Engineering, 2007, 69, 1158-1193.	2.8	98
74	A unified plasticity model for cyclic behaviour of clay and sand. Mechanics Research Communications, 2007, 34, 97-114.	1.8	67
75	Kinematic variables bridging discrete and continuum granular mechanics. Mechanics Research Communications, 2006, 33, 651-666.	1.8	33
76	Interpretation of Pressuremeter Tests in Sand using Advanced Soil Model. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2002, 128, 274-278.	3.0	8
77	Cavity Expansion Methods in Geomechanics. , 2000, , .		242
78	State parameter–based thermomechanical constitutive model for saturated fine-grained soils. Canadian Geotechnical Journal, 0, , 1-14.	2.8	5