Benjamin Dierre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11980416/publications.pdf

Version: 2024-02-01

		236925	197818
57	2,377	25	49
papers	citations	h-index	g-index
58	58	58	3328
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced thermal degradation stability of the Sr _{2+ phosphor by ultra-thin Sr_{2/sub>Si₅N₈:Eu²⁺ phosphor by ultra-thin Al₂O₃ coating through the atomic layer deposition technique in a fluidized bed reactor. Journal of Materials Chemistry C, 2019, 7, 5772-5781.}}	5.5	26
2	Growthâ€Parameter Dependence of Polarity and Electronic Transports in ZnO Thin Films Deposited by Magnetron Sputtering. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700838.	1.8	2
3	Extended Study on Electrophoretic Deposition Process of Inorganic Octahedral Metal Clusters: Advanced Multifunctional Transparent Nanocomposite Thin Films. Bulletin of the Chemical Society of Japan, 2018, 91, 1763-1774.	3.2	26
4	Electronic Transport Properties Governed by Polarity Control through Tailoring of ZnO Bilayer Structures. Crystal Growth and Design, 2018, 18, 5824-5831.	3.0	6
5	Crystalline polarity of ZnO thin films deposited under dc external bias on various substrates. Journal of Crystal Growth, 2017, 463, 38-45.	1.5	6
6	New ultra-violet and near-infrared blocking filters for energy saving applications: fabrication of tantalum metal atom cluster-based nanocomposite thin films by electrophoretic deposition. Journal of Materials Chemistry C, 2017, 5, 10477-10484.	5 . 5	41
7	Enhanced cathodoluminescence of green \hat{l}^2 -sialon:Eu2+ phosphor by In2O3 coating. Journal of Alloys and Compounds, 2017, 727, 1110-1114.	5.5	8
8	Mo ₆ cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence. Science and Technology of Advanced Materials, 2017, 18, 458-466.	6.1	37
9	Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors. Materials, 2017, 10, 1180.	2.9	10
10	Electrophoretic Coating of Octahedral Molybdenum Metal Clusters for UV/NIR Light Screening. Coatings, 2017, 7, 114.	2.6	13
11	Ternary In2S3/In2O3 heterostructures and their cathodoluminescence. RSC Advances, 2016, 6, 51089-51095.	3.6	4
12	Inorganic Molybdenum Clusters as Lightâ€Harvester in All Inorganic Solar Cells: A Proof of Concept. ChemistrySelect, 2016, 1, 2284-2289.	1.5	35
13	Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films. Science and Technology of Advanced Materials, 2016, 17, 443-453.	6.1	25
14	Time-gated luminescence bioimaging with new luminescent nanocolloids based on [Mo ₆ 1 ₈ (C ₂ F ₅ COO) ₆] _{]^{2â^'}metal atom clusters. Physical Chemistry Chemical Physics, 2016, 18, 30166-30173.}	2.8	53
15	Low-energy Cathodoluminescence for (Oxy)Nitride Phosphors. Journal of Visualized Experiments, 2016, , .	0.3	2
16	Solubility and crystallographic facet tailoring of (GaN) _{1â^'x} (ZnO) _x pseudobinary solid-solution nanostructures as promising photocatalysts. Nanoscale, 2016, 8, 3694-3703.	5 . 6	42
17	Defects and luminescence control of AlN ceramic by Si-doping. Scripta Materialia, 2016, 110, 109-112.	5. 2	12
18	Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures. AIP Advances, $2015, 5, .$	1.3	4

#	Article	IF	CITATIONS
19	Microanalysis of Calcium Codoped LaAl(Si _{6â^'<i>z</i>} Al _{<i>z</i>})(N _{10â^'<i>z</i>} O _{<i>z</i>}) (<i>z</i> -1): Ce ³⁺ Blue Phosphor. Journal of the American Ceramic Society, 2015, 98, 1253-1258.	3.8	4
20	Cathodoluminescence Properties of Blue Emitting <scp><scp>Eu</scp></scp> ²⁺ â€Doped <scp><scp>AlN</scp></scp> â€Polytypoids for Fieldâ€Emission Displays. Journal of the American Ceramic Society, 2014, 97, 339-341.	3.8	3
21	Influence of Si on the particle growth of AIN ceramics. Applied Physics Express, 2014, 7, 115503.	2.4	6
22	A novel and high brightness AlN:Mn2+ red phosphor for field emission displays. Dalton Transactions, 2014, 43, 6120.	3.3	55
23	Positional-dependent luminescence property of \hat{l}^2 -SiAlON:Eu2+ phosphor particle. Applied Physics Letters, 2014, 104, .	3.3	8
24	Origin of Yellow-Band Emission in Epitaxially Grown GaN Nanowire Arrays. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 14159-14166.	8.0	57
25	Luminescence properties of a blue-emitting phosphor: (Sr1â^'xEux)Si9Al19ON31 (0 <xâ‰≇). 2013,="" 207,="" 49-54.<="" chemistry,="" journal="" of="" solid="" state="" td=""><td>2.9</td><td>14</td></xâ‰≇).>	2.9	14
26	Synthesis, Microstructure, and Cathodoluminescence of [0001]-Oriented GaN Nanorods Grown on Conductive Graphite Substrate. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12066-12072.	8.0	33
27	Solid Solution, Phase Separation, and Cathodoluminescence of GaP–ZnS Nanostructures. ACS Applied Materials & Distriction (1998) (199	8.0	16
28	Local analysis of Eu ²⁺ emission in CaAlSiN ₃ . Science and Technology of Advanced Materials, 2013, 14, 064201.	6.1	18
29	Cathodoluminescence Modulation of ZnS Nanostructures by Morphology, Doping, and Temperature. Advanced Functional Materials, 2013, 23, 3701-3709.	14.9	69
30	Emission Enhancement of SiC/SiO ₂ Core/Shell Nanowires Induced by the Oxide Shell. Materials Science Forum, 2012, 717-720, 557-560.	0.3	1
31	Luminescence properties of SiC/SiO2 core–shell nanowires with different radial structure. Materials Letters, 2012, 71, 137-140.	2.6	34
32	Spatially resolved cathodoluminescence of individual BN-coated CaS:Eu nanowires. Nanoscale, 2011, 3, 598-602.	5.6	6
33	Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology, 2011, 22, 145602.	2.6	97
34	Eu ²⁺ â€doped AlNâ€"SiC solidâ€solution phosphors: Synthesis and cathodoluminescence properties. Journal of the Society for Information Display, 2011, 19, 627-630.	2.1	7
35	Effect of Size-Dependent Thermal Instability on Synthesis of Zn2SiO4-SiO x Core–Shell Nanotube Arrays and Their Cathodoluminescence Properties. Nanoscale Research Letters, 2010, 5, 773-780.	5.7	19
36	352 nm ultraviolet emission from high-quality crystalline AlN whiskers. Nanotechnology, 2010, 21, 075708.	2.6	18

#	Article	IF	Citations
37	Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO ₂ core/shell self-organized nanowires. Nanotechnology, 2010, 21, 345702.	2.6	37
38	Hydrogen released from bulk ZnO single crystals investigated by time-of-flight electron-stimulated desorption. Journal of Applied Physics, 2010, 108, 104902.	2.5	4
39	Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13588-13592.	7.1	44
40	Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Science and Technology of Advanced Materials, 2010, 11, 043001.	6.1	49
41	Solution Growth and Cathodoluminescence of Novel SnO2 Coreâ^'Shell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010, 114, 8235-8240.	3.1	48
42	Single-crystal MgS nanotubes: synthesis and properties. CrystEngComm, 2010, 12, 1286-1289.	2.6	7
43	Investigation of emitting centers in SiO2 codoped with silicon nanoclusters and Er3+ ions by cathodoluminescence technique. Journal of Applied Physics, 2010, 108, 113504.	2.5	21
44	Suppression of concentration quenching of Er-related luminescence in Er-doped GaN. Applied Physics Letters, 2010, 96, 181901.	3.3	33
45	Unpredicted Nucleation of Extended Zinc Blende Phases in Wurtzite ZnO Nanotetrapod Arms. ACS Nano, 2009, 3, 3158-3164.	14.6	49
46	Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20, 085705.	2.6	45
47	Solvothermal Synthesis, Cathodoluminescence, and Fieldâ€Emission Properties of Pure and Nâ€Doped ZnO Nanobullets. Advanced Functional Materials, 2009, 19, 131-140.	14.9	153
48	Characterization, Cathodoluminescence, and Fieldâ€Emission Properties of Morphologyâ€Tunable CdS Micro/Nanostructures. Advanced Functional Materials, 2009, 19, 2423-2430.	14.9	114
49	Singleâ€Crystalline ZnS Nanobelts as Ultravioletâ€Light Sensors. Advanced Materials, 2009, 21, 2034-2039.	21.0	537
50	UV Photodetectors: Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors (Adv. Mater.) Tj ETQq0 0 0 rgB	Г/Qyerlock	₹ 10 Tf 50 22
51	Role of Si in the Luminescence of AlN:Eu,Si Phosphors. Journal of the American Ceramic Society, 2009, 92, 1272-1275.	3.8	38
52	The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa ₂ O ₄ nanorods. Nanotechnology, 2009, 20, 365705.	2.6	20
53	Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures. Nano Letters, 2008, 8, 2794-2799.	9.1	185
54	Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips:  Potential Luminescent and Field-Emitter Nanomaterial. Journal of Physical Chemistry C, 2008, 112, 4735-4742.	3.1	89

#	Article	IF	CITATIONS
55	Blue emission of Ce3+ in lanthanide silicon oxynitride phosphors. Journal of Materials Research, 2007, 22, 1933-1941.	2.6	86
56	Nature and Role of Various Si-Based Sensitizers for Er ³⁺ Ions in Silicon-Rich Silicon Oxide Thin Films. Advanced Materials Research, 0, 324, 81-84.	0.3	1
57	Textured Beta-Sialon:Eu ²⁺ Phosphor Deposits Fabricated by Electrophoretic Deposition (EPD) Process within a Strong Magnetic Field: Preparation Process and Photoluminescence (PL) Properties Depending on Orientation. Key Engineering Materials, 0, 654, 268-273.	0.4	0