
Joan Daniel Prades

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11980389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Power of Models: Modeling Power Consumption for IoT Devices. IEEE Sensors Journal, 2015, 15, 5777-5789.	4.7	237
2	The Role of Surface Oxygen Vacancies in the NO ₂ Sensing Properties of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19540-19546.	3.1	181
3	Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu ₂ CdSnSe ₄ . Chemistry of Materials, 2012, 24, 562-570.	6.7	153
4	Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires. Journal of Physical Chemistry C, 2008, 112, 14639-14644.	3.1	130
5	Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO ₂ Nanowires. Advanced Functional Materials, 2008, 18, 2990-2994.	14.9	96
6	Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures. Journal of Materials Chemistry, 2012, 22, 20472.	6.7	87
7	Highly Selective SAM–Nanowire Hybrid NO ₂ Sensor: Insight into Charge Transfer Dynamics and Alignment of Frontier Molecular Orbitals. Advanced Functional Materials, 2014, 24, 595-602.	14.9	71
8	Band Engineered Epitaxial 3D GaN-InGaN Core–Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 2235-2240.	8.0	69
9	A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Physical Chemistry Chemical Physics, 2009, 11, 10881.	2.8	63
10	On the photoconduction properties of low resistivity TiO ₂ nanotubes. Nanotechnology, 2010, 21, 445703.	2.6	50
11	Polarity-Driven Polytypic Branching in Cu-Based Quaternary Chalcogenide Nanostructures. ACS Nano, 2014, 8, 2290-2301.	14.6	47
12	First-Principles Study of NO[sub x] and SO[sub 2] Adsorption onto SnO[sub 2](110). Journal of the Electrochemical Society, 2007, 154, H675.	2.9	45
13	Micro light plates for low-power photoactivated (gas) sensors. Applied Physics Letters, 2019, 114, .	3.3	42
14	Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films, 2007, 515, 8670-8673.	1.8	28
15	Cu2HgSnSe4 nanoparticles: synthesis and thermoelectric properties. CrystEngComm, 2013, 15, 8966.	2.6	25
16	Enhancement of the Sub-Band-Gap Photoconductivity in ZnO Nanowires through Surface Functionalization with Carbon Nanodots. Journal of Physical Chemistry C, 2018, 122, 1852-1859.	3.1	23
17	Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials. ACS Applied Energy Materials, 2020, 3, 2120-2129.	5.1	11
18	Substrate effects on the structural and photoresponse properties of CVD grown ZnO nanostructures: aluminavs.silica. CrystEngComm. 2011. 13, 656-662.	2.6	10

#	Article	IF	CITATIONS
19	Suppression of the NO2 interference by chromium addition in WO3-based ammonia sensors. Investigation of the structural properties and of the related sensing pathways. Sensors and Actuators B: Chemical, 2013, 187, 308-312.	7.8	7
20	Insight into the structural, electrical and photoresponse properties of individual Fe:SrTiO3 nanotubes. Materials Chemistry and Physics, 2013, 141, 9-13.	4.0	5
21	Inorganic nanomaterials. , 2020, , 17-35.		0