Voula Alexandraki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1197912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology, 2015, 6, 58.	3.5	257
2	Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions. Probiotics and Antimicrobial Proteins, 2018, 10, 313-322.	3.9	48
3	Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Frontiers in Microbiology, 2019, 10, 2916.	3.5	39
4	The complete genome sequence of the yogurt isolate Streptococcus thermophilus ACA-DC 2. Standards in Genomic Sciences, 2017, 12, 18.	1.5	31
5	Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: The case of essential oils. Food Chemistry, 2019, 278, 415-423.	8.2	31
6	Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533. Genome Announcements, 2017, 5, .	0.8	23
7	Comparative Genomics of Lactobacillus acidipiscis ACA-DC 1533 Isolated From Traditional Greek Kopanisti Cheese Against Species Within the Lactobacillus salivarius Clade. Frontiers in Microbiology, 2018, 9, 1244.	3.5	22
8	Reverse micelles as nanocarriers of nisin against foodborne pathogens. Food Chemistry, 2018, 255, 97-103.	8.2	21
9	Microemulsions as Potential Carriers of Nisin: Effect of Composition on Structure and Efficacy. Langmuir, 2016, 32, 8988-8998.	3.5	18
10	Para-κ-casein during the ripening and storage of low-pH, high-moisture Feta cheese. Journal of Dairy Research, 2018, 85, 226-231.	1.4	7
11	Whole-genome sequence data and analysis of Lactobacillus delbrueckii subsp. lactis ACA-DC 178 isolated from Greek Kasseri cheese. Data in Brief, 2019, 25, 104282.	1.0	4
12	Whole-Genome Sequence of the Cheese Isolate Lactobacillus rennini ACA-DC 565. Genome Announcements, 2017, 5, .	0.8	3
13	Complete Genome Sequence of the Sourdough Isolate Lactobacillus zymae ACA-DC 3411. Genome Announcements, 2017, 5, .	0.8	2
14	Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. <i>bulgaricus</i> ACA-DC 87. Genome Announcements, 2017, 5, .	0.8	2
15	Engineered strains of Streptococcus macedonicus towards an osmotic stress resistant phenotype retain their ability to produce the bacteriocin macedocin under hyperosmotic conditions. Journal of Biotechnology, 2015, 212, 125-133.	3.8	1