Aldo A RodrÃ-guez-Menchaca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1197902/publications.pdf

Version: 2024-02-01

43 papers 801 citations

16 h-index 27 g-index

44 all docs

44 docs citations

44 times ranked 1089 citing authors

#	Article	IF	CITATIONS
1	Participación de rafts en enfermedades neurológicas. NeurologÃa, 2021, , .	0.7	O
2	Kir4.1/Kir5.1 channels possess strong intrinsic inward rectification determined by a voltage-dependent K+-flux gating mechanism. Journal of General Physiology, 2021, 153, .	1.9	5
3	Riluzole inhibits Kv4.2 channels acting on the closed and closed inactivated states. European Journal of Pharmacology, 2021, 899, 174026.	3.5	1
4	Determination of the size of lipid rafts studied through single-molecule FRET simulations. Biophysical Journal, 2021, 120, 2287-2295.	0.5	4
5	Inhibitory effect of terfenadine on Kir2.1 and Kir2.3 channels. Acta Pharmaceutica, 2021, 71, 317-324.	2.0	1
6	<i>In vitro</i> and <i>in silico</i> characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. British Journal of Pharmacology, 2020, 177, 4548-4560.	5.4	8
7	Functional marriage in plasma membrane: Critical cholesterol level–optimal protein activity. British Journal of Pharmacology, 2020, 177, 2456-2465.	5.4	11
8	Voltage-induced structural modifications on M2 muscarinic receptor and their functional implications when interacting with the superagonist iperoxo. Biochemical Pharmacology, 2020, 177, 113961.	4.4	7
9	Chloroquine inhibits tumor-related Kv10.1 channel and decreases migration of MDA-MB-231 breast cancer cells in vitro. European Journal of Pharmacology, 2019, 855, 262-266.	3.5	19
10	Cytoskeleton disruption affects Kv2.1 channel function and its modulation by PIP2. Journal of Physiological Sciences, 2019, 69, 513-521.	2.1	2
11	Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate. Scientific Reports, 2018, 8, 1769.	3.3	18
12	Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1242-1251.	2.6	13
13	Dual regulation of hEAG1 channels by phosphatidylinositol 4,5-bisphosphate. Biochemical and Biophysical Research Communications, 2018, 503, 2531-2535.	2.1	7
14	Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. European Journal of Pharmacology, 2017, 800, 40-47.	3.5	15
15	Inhibition of Kir4.1 potassium channels by quinacrine. Brain Research, 2017, 1663, 87-94.	2.2	11
16	High-potency block of Kir4.1 channels by pentamidine: Molecular basis. European Journal of Pharmacology, 2017, 815, 56-63.	3.5	13
17	Phytochemicals genistein and capsaicin modulate Kv2.1 channel gating. Pharmacological Reports, 2017, 69, 1145-1153.	3.3	8
18	Extracellular protons enable activation of the calciumâ€dependent chloride channel TMEM16A. Journal of Physiology, 2017, 595, 1515-1531.	2.9	27

#	Article	IF	CITATIONS
19	Modulation of the voltage-gated potassium channel Kv2.1 by the anti-tumor alkylphospholipid perifosine. Pharmacological Reports, 2016, 68, 457-461.	3.3	5
20	Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models. Pflugers Archiv European Journal of Physiology, 2016, 468, 1241-1257.	2.8	26
21	The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K + channels. Pharmacological Reports, 2016, 68, 383-389.	3.3	6
22	Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1. Pflugers Archiv European Journal of Physiology, 2015, 467, 1699-1709.	2.8	6
23	Modulation of Kv2.1 channels inactivation by curcumin. Pharmacological Reports, 2015, 67, 1273-1279.	3.3	9
24	Impact of the whole-cell patch-clamp configuration on the pharmacological assessment of the hERG channel: Trazodone as a case example. Journal of Pharmacological and Toxicological Methods, 2014, 69, 237-244.	0.7	5
25	Distant Cytosolic Residues in Kir Channels Control Channel Gating and Modulation by Cholesterol and PI(4,5)P2. Biophysical Journal, 2013, 104, 24a-25a.	0.5	O
26	Hypercholesterolemia Induces Up-regulation of KACh Cardiac Currents via a Mechanism Independent of Phosphatidylinositol 4,5-Bisphosphate and $\hat{G^2l^3}$. Journal of Biological Chemistry, 2012, 287, 4925-4935.	3.4	36
27	Molecular Mechanisms of Chloroquine Inhibition of Heterologously Expressed Kir6.2/SUR2A Channels. Molecular Pharmacology, 2012, 82, 803-813.	2.3	16
28	Distant Cytosolic Residues Mediate a Two-way Molecular Switch That Controls the Modulation of Inwardly Rectifying Potassium (Kir) Channels by Cholesterol and Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2). Journal of Biological Chemistry, 2012, 287, 40266-40278.	3.4	27
29	Hypercholesterolemia Induces Upregulation of KACh Cardiac Currents. Biophysical Journal, 2012, 102, 301a.	0.5	O
30	$\langle i \rangle S \langle i \rangle$ (+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. British Journal of Pharmacology, 2012, 165, 2749-2757.	5.4	26
31	PIP ₂ controls voltage-sensor movement and pore opening of Kv channels through the S4–S5 linker. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2399-408.	7.1	84
32	Modulation of Kir Channels by Cholesterol and PI(4,5)P2 Is Controlled by a Two-Way Molecular Switch. Biophysical Journal, 2012, 102, 18a.	0.5	0
33	Dual Regulation of Voltage-Sensitive Ion Channels by PIP2. Frontiers in Pharmacology, 2012, 3, 170.	3 . 5	45
34	The Antimalarial Drug Mefloquine Inhibits Cardiac Inward Rectifier K+ Channels: Evidence for Interference in PIP2-Channel Interaction. Journal of Cardiovascular Pharmacology, 2011, 57, 407-415.	1.9	22
35	Mechanisms for Kir channel inhibition by quinacrine: acute pore block of Kir2.x channels and interference in PIP2 interaction with Kir2.x and Kir6.2 channels. Pflugers Archiv European Journal of Physiology, 2011, 462, 505-517.	2.8	19
36	Thiopental inhibits function of different inward rectifying potassium channel isoforms by a similar mechanism. European Journal of Pharmacology, 2010, 638, 33-41.	3.5	10

#	Article	IF	CITATIONS
37	Tamoxifen Inhibits Inward Rectifier K ⁺ 2.x Family of Inward Rectifier Channels by Interfering with Phosphatidylinositol 4,5-Bisphosphate-Channel Interactions. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 563-573.	2.5	41
38	A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2. Nature Chemical Biology, 2008, 4, 624-631.	8.0	48
39	The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1364-1368.	7.1	118
40	Kv1.5 Open Channel Block by the Antiarrhythmic Drug Disopyramide: Molecular Determinants of Block. Journal of Pharmacological Sciences, 2008, 108, 49-55.	2.5	24
41	The D3-dopaminergic Agonist 7-hydroxy-dipropylaminotetralin (7-OH-DPAT) Increases Cardiac Action Potential Duration and Blocks Human Ether-a-go-go-related Gene K+ Channel. Journal of Cardiovascular Pharmacology, 2006, 47, 656-662.	1.9	1
42	Block of hERG Channels by Berberine. Journal of Cardiovascular Pharmacology, 2006, 47, 21-29.	1.9	38
43	Inhibition of cardiac HERG potassium channels by antidepressant maprotiline. European Journal of Pharmacology, 2006, 531, 1-8.	3.5	19