
Kuo-Chuan Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1197529/publications.pdf Version: 2024-02-01

Кио-Сним Но

#	Article	IF	CITATIONS
1	Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy and Environmental Science, 2012, 5, 9662.	15.6	705
2	Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Organic Letters, 2005, 7, 1899-1902.	2.4	428
3	2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells. Chemistry of Materials, 2008, 20, 1830-1840.	3.2	401
4	CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell. ACS Nano, 2012, 6, 7016-7025.	7.3	333
5	Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2017, 70, 920-935.	8.2	320
6	A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2006, 45, 5822-5825.	7.2	315
7	Viologen-based electrochromic materials and devices. Journal of Materials Chemistry C, 2019, 7, 4622-4637.	2.7	291
8	Use of organic materials in dye-sensitized solar cells. Materials Today, 2017, 20, 267-283.	8.3	231
9	FeS ₂ Nanocrystal Ink as a Catalytic Electrode for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 6694-6698.	7.2	227
10	EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7514-7522.	2.6	226
11	Investigation on Capacitance Mechanisms of Fe[sub 3]O[sub 4] Electrochemical Capacitors. Journal of the Electrochemical Society, 2006, 153, A75.	1.3	214
12	Molecularly Imprinted Electrochemical Sensors. Electroanalysis, 2010, 22, 1795-1811.	1.5	211
13	Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1472-1477.	3.0	209
14	Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Advances, 2015, 5, 23810-23825.	1.7	207
15	Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cellsâ~†. Solar Energy Materials and Solar Cells, 2008, 92, 1628-1633.	3.0	203
16	Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy and Environmental Science, 2011, 4, 3448.	15.6	196
17	Organic dyes containing thienylfluorene conjugation for solar cells. Chemical Communications, 2005, , 4098.	2.2	185
18	Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. Journal of Materials Chemistry A, 2016, 4, 1591-1597.	5.2	183

#	Article	IF	CITATIONS
19	Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs). Scientific Reports, 2014, 4, 6983.	1.6	182
20	A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3516-3530.	5.2	180
21	Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosensors and Bioelectronics, 2011, 27, 125-131.	5.3	178
22	Multifunctionalized Rutheniumâ€Based Supersensitizers for Highly Efficient Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 7342-7345.	7.2	176
23	A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. Journal of Power Sources, 2009, 188, 313-318.	4.0	172
24	Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 2015, 58, 51-56.	2.3	171
25	Organic Dyes Containing Carbazole as Donor and π-Linker: Optical, Electrochemical, and Photovoltaic Properties. ACS Applied Materials & Interfaces, 2014, 6, 2528-2539.	4.0	170
26	The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 2006, 90, 2391-2397.	3.0	153
27	Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization. Analytica Chimica Acta, 2005, 542, 90-96.	2.6	145
28	A complementary electrochromic device based on polyaniline and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2006, 90, 506-520.	3.0	140
29	Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta, 2010, 82, 340-347.	2.9	138
30	Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®. Biosensors and Bioelectronics, 2009, 24, 3504-3509.	5.3	136
31	A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy, 2017, 36, 260-267.	8.2	135
32	Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals. Advanced Materials, 2015, 27, 7229-7235.	11.1	134
33	A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. Journal of Materials Chemistry, 2010, 20, 4067.	6.7	131
34	Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. Journal of Power Sources, 2010, 195, 6225-6231.	4.0	130
35	Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach. ChemSusChem, 2013, 6, 20-35.	3.6	130
36	Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 2011, 57, 277-284.	2.6	128

#	Article	IF	CITATIONS
37	lodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black. Journal of Materials Chemistry, 2010, 20, 2356.	6.7	114
38	Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors. Journal of Power Sources, 2012, 214, 91-99.	4.0	114
39	A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1416-1420.	3.0	111
40	Amperometric Glucose Biosensor Based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film. Electroanalysis, 2006, 18, 1408-1415.	1.5	109
41	A ternary cascade structure enhances the efficiency of polymer solar cells. Journal of Materials Chemistry, 2010, 20, 2820.	6.7	109
42	In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. Journal of Materials Chemistry A, 2016, 4, 10673-10682.	5.2	109
43	Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy, 2017, 32, 19-27.	8.2	109
44	Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 1479-1490.	5.2	109
45	Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources, 2009, 188, 635-641.	4.0	107
46	A high performance electrochemical sensor for acetaminophen based on a rGO–PEDOT nanotube composite modified electrode. Journal of Materials Chemistry A, 2014, 2, 7229-7237.	5.2	106
47	Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sensors and Actuators B: Chemical, 2014, 204, 159-166.	4.0	104
48	Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Analytica Chimica Acta, 2005, 542, 76-82.	2.6	101
49	Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 3375.	1.3	100
50	Fabrication of NOx gas sensors using In2O3–ZnO composite films. Sensors and Actuators B: Chemical, 2010, 146, 28-34.	4.0	100
51	Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials. Physical Chemistry Chemical Physics, 2012, 14, 14099.	1.3	99
52	Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films. Sensors and Actuators B: Chemical, 2001, 77, 253-259.	4.0	98
53	2,7-Diaminofluorene-Based Organic Dyes for Dye-Sensitized Solar Cells: Effect of Auxiliary Donor on Optical and Electrochemical Properties. Journal of Organic Chemistry, 2011, 76, 4910-4920.	1.7	97
54	Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT:PSS counter electrodes. Nano Energy, 2015, 18, 109-117.	8.2	97

#	Article	IF	CITATIONS
55	Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 30351-30361.	4.0	97
56	Electrochemical characterization of the solvent-enhanced conductivity of poly(3,4-ethylenedioxythiophene) and its application in polymer solar cells. Journal of Materials Chemistry, 2009, 19, 3704.	6.7	95
57	Enhanced Charge Collection in MOFâ€525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Advanced Science, 2017, 4, 1700261.	5.6	95
58	Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films. Chemical Communications, 2015, 51, 2414-2417.	2.2	94
59	Unsymmetrical Squaraines Incorporating the Thiophene Unit for Panchromatic Dye-Sensitized Solar Cells. Organic Letters, 2010, 12, 5454-5457.	2.4	93
60	Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend. Organic Electronics, 2009, 10, 27-33.	1.4	91
61	A novel core–shell multi-walled carbon nanotube@graphene oxide nanoribbon heterostructure as a potential supercapacitor material. Journal of Materials Chemistry A, 2013, 1, 11237.	5.2	90
62	A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films. Journal of Power Sources, 2010, 195, 6232-6238.	4.0	89
63	Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells. Solar Energy Materials and Solar Cells, 2013, 108, 156-163.	3.0	89
64	Y-shaped metal-free D–π–(A)2 sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 3092.	5.2	89
65	A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sensors and Actuators B: Chemical, 2007, 121, 576-582.	4.0	88
66	2,6-Conjugated anthracene sensitizers for high-performance dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 2477.	15.6	88
67	Synthesis and applications of novel low bandgap star-burst molecules containing a triphenylamine core and dialkylated diketopyrrolopyrrole arms for organic photovoltaics. Journal of Materials Chemistry, 2012, 22, 7945.	6.7	86
68	Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosensors and Bioelectronics, 2004, 20, 3-8.	5.3	85
69	Detection of nitrite using poly(3,4-ethylenedioxythiophene) modified SPCEs. Sensors and Actuators B: Chemical, 2009, 140, 51-57.	4.0	85
70	Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell. Journal of Materials Chemistry, 2010, 20, 9379.	6.7	85
71	Fluorene-Based Sensitizers with a Phenothiazine Donor: Effect of Mode of Donor Tethering on the Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 2249-2262.	4.0	84
72	PEDOT-decorated nitrogen-doped graphene as the transparent composite film for the counter electrode of a dye-sensitized solar cell. Nano Energy, 2015, 12, 374-385.	8.2	83

Kuo-Chuan Ho

#	Article	IF	CITATIONS
73	Highly efficient plastic-based quasi-solid-state dye-sensitized solarÂcells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. Journal of Power Sources, 2014, 245, 411-417.	4.0	82
74	A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation. Talanta, 2010, 82, 1905-1911.	2.9	81
75	Bimetallic vanadium cobalt diselenide nanosheets with additional active sites for excellent asymmetric pseudocapacitive performance: comparing the electrochemical performances withÂM–CoSe ₂ (M = Zn, Mn, and Cu). Journal of Materials Chemistry A, 2019, 7, 12565-12581.	5.2	81
76	Spectroelectrochemical studies of manganese phthalocyanine thin films for applications in electrochromic devices. Journal of Electroanalytical Chemistry, 2002, 524-525, 81-89.	1.9	80
77	Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells. Thin Solid Films, 2010, 518, 1716-1721.	0.8	80
78	Power overshoot in two-chambered microbial fuel cell (MFC). Bioresource Technology, 2011, 102, 4742-4746.	4.8	79
79	Synthesis of Redox Polymer Nanobeads and Nanocomposites for Glucose Biosensors. ACS Applied Materials & Interfaces, 2013, 5, 7852-7861.	4.0	79
80	A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8471.	5.2	79
81	Ni 3 Se 4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells. Nano Energy, 2014, 10, 201-211.	8.2	79
82	Printed Multicolor High-Contrast Electrochromic Devices. ACS Applied Materials & Interfaces, 2015, 7, 25069-25076.	4.0	79
83	The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2398-2404.	3.0	78
84	Nanoclimbing-wall-like CoSe 2 /carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: A study on the morphology control. Nano Energy, 2016, 22, 594-606.	8.2	78
85	An electrochromic device based on Prussian blue, self-immobilized vinyl benzyl viologen, and ferrocene. Solar Energy Materials and Solar Cells, 2016, 147, 75-84.	3.0	78
86	A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells. Carbon, 2012, 50, 4192-4202.	5.4	77
87	Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 562-569.	5.2	77
88	Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and) Tj ETQq0 0 0 r properties dependence on the metal-to-chalcogen composition. Renewable Energy, 2019, 138, 139-151.	gBT /Over 4.3	lock 10 Tf 50 77
89	A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode. Journal of Materials Chemistry, 2012, 22, 5550.	6.7	76

90Multiwalled Carbon Nanotube@Reduced Graphene Oxide Nanoribbon as the Counter Electrode for
Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16626-16634.1.576

#	Article	IF	CITATIONS
91	Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction. Journal of Power Sources, 2018, 375, 29-36.	4.0	75
92	Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Analytica Chimica Acta, 2009, 640, 68-74.	2.6	74
93	Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and Prussian blue. Solar Energy Materials and Solar Cells, 2006, 90, 521-537.	3.0	73
94	A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell. Journal of Materials Chemistry, 2011, 21, 19021.	6.7	73
95	Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11094-11102.	5.2	73
96	Thermally Cured Dual Functional Viologen-Based All-in-One Electrochromic Devices with Panchromatic Modulation. ACS Applied Materials & amp; Interfaces, 2016, 8, 4175-4184.	4.0	73
97	Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Solar Energy Materials and Solar Cells, 2007, 91, 1426-1431.	3.0	72
98	Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. Journal of Materials Chemistry, 2009, 19, 5009.	6.7	72
99	Electro-optical properties of new anthracene based organic dyes for dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 33-43.	2.0	72
100	Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers. Scientific Reports, 2016, 6, 34319.	1.6	72
101	Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sensors and Actuators B: Chemical, 2010, 146, 466-471.	4.0	71
102	Organic Dyes Containing Fluorene Decorated with Imidazole Units for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2014, 79, 3159-3172.	1.7	71
103	Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications. Solar Energy Materials and Solar Cells, 2012, 99, 154-159.	3.0	70
104	2-Alkyl-5-thienyl-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene-Based Donor Molecules for Solution-Processed Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 9494-9500.	4.0	70
105	A coral-like film of Ni@NiS with core–shell particles for the counter electrode of an efficient dye-sensitized solar cell. Journal of Materials Chemistry A, 2014, 2, 5816-5824.	5.2	70
106	A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. Journal of Physical Chemistry Letters, 2015, 6, 1773-1779.	2.1	69
107	Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system. Electrochimica Acta, 2001, 46, 2151-2158.	2.6	68
108	Novel Pyrenoimidazole-Based Organic Dyes for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 2622-2625.	2.4	68

#	Article	IF	CITATIONS
109	Facile Synthesis of Boron-doped Graphene Nanosheets with Hierarchical Microstructure at Atmosphere Pressure for Metal-free Electrochemical Detection of Hydrogen Peroxide. Electrochimica Acta, 2015, 172, 52-60.	2.6	68
110	Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode. Sensors and Actuators B: Chemical, 2005, 108, 738-745.	4.0	66
111	A novel molecularly imprinted polymer thin film as biosensor for uric acid. Talanta, 2010, 80, 1145-1151.	2.9	66
112	Highâ€Performance Dipolar Organic Dyes with an Electronâ€Deficient Diphenylquinoxaline Moiety in the Ï€â€Conjugation Framework for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 12085-12095.	1.7	65
113	Detection of nicotine based on molecularly imprinted TiO2-modified electrodes. Analytica Chimica Acta, 2009, 633, 119-126.	2.6	64
114	Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 2416-2421.	4.0	64
115	Using a PEDOT:PSS modified electrode for detecting nitric oxide gas. Sensors and Actuators B: Chemical, 2009, 140, 402-406.	4.0	63
116	All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor. Journal of Materials Chemistry, 2010, 20, 3619.	6.7	63
117	A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 5107-5118.	5.2	63
118	The Influence of Charge Trapping on the Electrochromic Performance of Poly(3,4-alkylenedioxythiophene) Derivatives. ACS Applied Materials & Interfaces, 2010, 2, 351-359.	4.0	62
119	Nanographite/polyaniline composite films as the counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 10384.	6.7	62
120	Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell. Journal of Power Sources, 2011, 196, 4859-4864.	4.0	62
121	Graphene-modified polyaniline as the catalyst material for the counter electrode of a dye-sensitized solar cell. Journal of Power Sources, 2012, 217, 152-157.	4.0	62
122	In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectronic Engineering, 2013, 111, 409-415.	1.1	62
123	Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2016, 302, 155-163.	4.0	62
124	Complementary inverter circuits based on p-SnO2 and n-In2O3 thin film transistors. Applied Physics Letters, 2008, 92, .	1.5	61
125	rGO/SWCNT composites as novel electrode materials for electrochemical biosensing. Biosensors and Bioelectronics, 2013, 43, 173-179.	5.3	61
126	Highâ€Performance Aqueous/Organic Dye‧ensitized Solar Cells Based on Sensitizers Containing Triethylene Oxide Methyl Ether. ChemSusChem, 2015, 8, 2503-2513.	3.6	61

#	Article	IF	CITATIONS
127	A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 288, 221-228.	4.0	61
128	Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode. Journal of Power Sources, 2010, 195, 4344-4349.	4.0	60
129	Co-sensitization promoted light harvesting for organic dye-sensitized solar cells using unsymmetrical squaraine dye and novel pyrenoimidazole-based dye. Journal of Power Sources, 2013, 240, 779-785.	4.0	60
130	Organic dyes containing fluoren-9-ylidene chromophores for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5766.	5.2	60
131	Fabrication of multilayer organic solar cells through a stamping technique. Journal of Materials Chemistry, 2009, 19, 4077.	6.7	59
132	Pyrene-based organic dyes with thiophene containing ï€-linkers for dye-sensitized solar cells: optical, electrochemical and theoretical investigations. Physical Chemistry Chemical Physics, 2011, 13, 17210.	1.3	59
133	A composite film of TiS2/PEDOT:PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 14888.	5.2	59
134	Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells. Chemical Communications, 2011, 47, 8346.	2.2	58
135	Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochimica Acta, 2012, 62, 341-347.	2.6	58
136	Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing. Sensors and Actuators B: Chemical, 2014, 192, 762-768.	4.0	58
137	Dyeâ€Sensitized Solar Cells with Reduced Graphene Oxide as the Counter Electrode Prepared by a Green Photothermal Reduction Process. ChemPhysChem, 2014, 15, 1175-1181.	1.0	58
138	Benzimidazole-Branched Isomeric Dyes: Effect of Molecular Constitution on Photophysical, Electrochemical, and Photovoltaic Properties. Journal of Organic Chemistry, 2016, 81, 640-653.	1.7	58
139	A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye. Journal of Power Sources, 2008, 185, 1505-1508.	4.0	56
140	Enhancement of photocurrent of polymerâ€gelled dyeâ€sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets. Journal of Polymer Science Part A, 2008, 46, 47-53.	2.5	56
141	A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). Journal of Power Sources, 2008, 185, 1605-1612.	4.0	56
142	All-solid-state electrochromic device based on poly(butyl viologen), Prussian blue, and succinonitrile. Solar Energy Materials and Solar Cells, 2009, 93, 1755-1760.	3.0	55
143	Novel Polymer Gel Electrolyte with Organic Solvents for Quasi-Solid-State Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18489-18496.	4.0	55
144	Metal-free branched alkyl tetrathienoacene (TTAR)-based sensitizers for high-performance dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 12310-12321.	5.2	55

#	Article	IF	CITATIONS
145	Multi-color electrochromic devices based on phenyl and heptyl viologens immobilized with UV-cured polymer electrolyte. Solar Energy Materials and Solar Cells, 2018, 177, 75-81.	3.0	55
146	Insights into the co-sensitizer adsorption kinetics for complementary organic dye-sensitized solar cells. Journal of Power Sources, 2014, 247, 906-914.	4.0	54
147	A high contrast solid-state electrochromic device based on nano-structural Prussian blue and poly(butyl viologen) thin films. Solar Energy Materials and Solar Cells, 2016, 145, 35-41.	3.0	54
148	Synthesis and Characterization of Samarium-Substituted Molybdenum Diselenide and Its Graphene Oxide Nanohybrid for Enhancing the Selective Sensing of Chloramphenicol in a Milk Sample. ACS Applied Materials & Interfaces, 2018, 10, 29712-29723.	4.0	54
149	Transition-Metal-Doped Molybdenum Diselenides with Defects and Abundant Active Sites for Efficient Performances of Enzymatic Biofuel Cell and Supercapacitor Applications. ACS Applied Materials & Interfaces, 2019, 11, 18483-18493.	4.0	54
150	Performance of gelled-type dye-sensitized solar cells associated with glass transition temperature of the gelatinizing polymers. European Polymer Journal, 2008, 44, 608-614.	2.6	53
151	A quasi solid-state dye-sensitized solar cell containing binary ionic liquid and polyaniline-loaded carbon black. Journal of Power Sources, 2010, 195, 3933-3938.	4.0	53
152	Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 6982.	6.7	53
153	Synthesis of MOFâ€525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application. Chemistry - an Asian Journal, 2017, 12, 2857-2862.	1.7	52
154	Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. Journal of Physical Chemistry Letters, 2017, 8, 1824-1830.	2.1	51
155	Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 7158.	6.7	50
156	Ionic liquid-doped poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells: Cationic and anionic effects on the photovoltaic performance. Nano Energy, 2014, 9, 1-14.	8.2	50
157	Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. Journal of Materials Chemistry A, 2015, 3, 4695-4705.	5.2	50
158	An all-thiophene electrochromic device fabricated with poly(3-methylthiophene) and poly(3,4-ethylenedioxythiophene). Solar Energy Materials and Solar Cells, 2006, 90, 491-505.	3.0	49
159	Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits. Applied Physics Letters, 2008, 92, .	1.5	49
160	Dibenzo[f,h]thieno[3,4-b] quinoxaline-Based Small Molecules for Efficient Bulk-Heterojunction Solar Cells. Organic Letters, 2009, 11, 4898-4901.	2.4	49
161	Solvent-Annealing-Induced Self-Organization of Poly(3-hexylthiophene), a High-Performance Electrochromic Material. ACS Applied Materials & Interfaces, 2009, 1, 2821-2828.	4.0	49
162	Using a low temperature crystallization process to prepare anatase TiO2 buffer layers for air-stable inverted polymer solar cells. Energy and Environmental Science, 2010, 3, 654.	15.6	49

#	Article	IF	CITATIONS
163	Fabrication and characterization of plastic-based flexible dye-sensitized solar cells consisting of crystalline mesoporous titania nanoparticles as photoanodes. Journal of Materials Chemistry, 2011, 21, 17511.	6.7	49
164	Graphite with Different Structures as Catalysts for Counter Electrodes in Dye-sensitized Solar Cells. Electrochimica Acta, 2015, 179, 211-219.	2.6	49
165	Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells. Journal of Power Sources, 2009, 190, 573-577.	4.0	48
166	An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays. Journal of Materials Chemistry, 2010, 20, 7201.	6.7	48
167	A photovoltaic cell incorporating a dye-sensitized ZnS/ZnO composite thin film and a hole-injecting PEDOT layer. Solar Energy Materials and Solar Cells, 2005, 86, 229-241.	3.0	47
168	Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar Energy Materials and Solar Cells, 2009, 93, 1860-1864.	3.0	47
169	Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytesâ~†. Solar Energy Materials and Solar Cells, 2010, 94, 668-674.	3.0	47
170	A counter electrode based on hollow spherical particles of polyaniline for a dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 14727.	6.7	46
171	Poly(ionic liquid)s for dye-sensitized solar cells: A mini-review. European Polymer Journal, 2018, 108, 420-428.	2.6	46
172	Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9′-dioctyl-fluorene-co-bithiophene] and a soluble fullerene. Nanotechnology, 2009, 20, 025202.	1.3	45
173	Efficient ternary bulk heterojunction solar cells based on small molecules only. Journal of Materials Chemistry A, 2015, 3, 10512-10518.	5.2	45
174	Enhancing the performance of dye-sensitized solar cells based on an organic dye by incorporating TiO2 nanotube in a TiO2 nanoparticle film. Electrochimica Acta, 2009, 54, 4123-4130.	2.6	44
175	Preparation of a novel molecularly imprinted polymer by the sol–gel process for sensing creatinine. Analytica Chimica Acta, 2012, 711, 83-90.	2.6	44
176	Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode. Journal of Materials Chemistry A, 2013, 1, 13759.	5.2	44
177	Electrocatalytic Zinc Composites as the Efficient Counter Electrodes of Dye-Sensitized Solar Cells: Study on the Electrochemical Performances and Density Functional Theory Calculations. ACS Applied Materials & Interfaces, 2015, 7, 28254-28263.	4.0	44
178	Size effects of platinum nanoparticles on the electrocatalytic ability of the counter electrode in dye-sensitized solar cells. Nano Energy, 2015, 17, 241-253.	8.2	44
179	Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosensors and Bioelectronics, 2015, 63, 317-324.	5.3	44
180	Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 537-546.	3.2	44

#	Article	IF	CITATIONS
181	Active-Site-Rich 1T-Phase CoMoSe ₂ Integrated Graphene Oxide Nanocomposite as an Efficient Electrocatalyst for Electrochemical Sensor and Energy Storage Applications. Analytical Chemistry, 2019, 91, 8358-8365.	3.2	44
182	Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 42634-42643.	4.0	44
183	Modulation of Donorâ^'Acceptor Interface through Thermal Treatment for Efficient Bilayer Organic Solar Cells. Journal of Physical Chemistry C, 2010, 114, 2764-2768.	1.5	43
184	Efficient bilayer polymer solar cells possessing planar mixed-heterojunction structures. Journal of Materials Chemistry, 2010, 20, 3295.	6.7	43
185	Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor. Sensors and Actuators B: Chemical, 2011, 157, 361-367.	4.0	43
186	Organic Dyes Containing Pyrenylamineâ€Based Cascade Donor Systems with Different Aromatic Ï€â€Linkers for Dyeâ€6ensitized Solar Cells: Optical, Electrochemical, and Device Characteristics. Chemistry - an Asian Journal, 2012, 7, 738-750.	1.7	43
187	Achieving a large contrast, low driving voltage, and high stability electrochromic device with a viologen chromophore. Journal of Materials Chemistry C, 2015, 3, 3266-3272.	2.7	43
188	Water processable Prussian blue–polyaniline:polystyrene sulfonate nanocomposite (PB–PANI:PSS) for multi-color electrochromic applications. Journal of Materials Chemistry C, 2016, 4, 10293-10300.	2.7	43
189	Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2009, 19, 7036.	6.7	42
190	Molecular Design of Interfacial Modifiers for Polymerâ€Inorganic Hybrid Solar Cells. Advanced Energy Materials, 2012, 2, 245-252.	10.2	42
191	Morphological Influence of Polypyrrole Nanoparticles on the Performance of Dye–Sensitized Solar Cells. Electrochimica Acta, 2015, 155, 263-271.	2.6	42
192	An efficient light-harvesting ruthenium dye for solar cell application. Dyes and Pigments, 2010, 84, 95-101.	2.0	41
193	Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 3185.	6.7	41
194	The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics, 2003, 165, 279-287.	1.3	40
195	Monitoring the 3D Nanostructures of Bulk Heterojunction Polymer Solar Cells Using Confocal Lifetime Imaging. Analytical Chemistry, 2010, 82, 1669-1673.	3.2	40
196	Zinc oxide synthesis via a microemulsion technique: morphology control with application to dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 1270-1273.	6.7	40
197	A complementary electrochromic device based on carbon nanotubes/conducting polymers. Solar Energy Materials and Solar Cells, 2012, 98, 294-299.	3.0	40
198	ZnO nanowire/nanoparticles composite films for the photoanodes of quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 88, 35-43.	2.6	40

#	Article	IF	CITATIONS
199	Organic dyes containing indolo[2,3-b]quinoxaline as a donor: synthesis, optical and photovoltaic properties. Tetrahedron, 2014, 70, 6318-6327.	1.0	40
200	Multifunctional Iodide-Free Polymeric Ionic Liquid for Quasi-Solid-State Dye-Sensitized Solar Cells with a High Open-Circuit Voltage. ACS Applied Materials & amp; Interfaces, 2016, 8, 15267-15278.	4.0	40
201	An electrochromic device based on all-in-one polymer gel through in-situ thermal polymerization. Solar Energy Materials and Solar Cells, 2016, 145, 61-68.	3.0	40
202	Cycling and at-rest stabilities of a complementary electrochromic device based on tungsten oxide and Prussian blue thin films. Electrochimica Acta, 1999, 44, 3227-3235.	2.6	39
203	On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1411-1416.	3.0	39
204	Dye-sensitized solar cells with a micro-porous TiO2 electrode and gel polymer electrolytes prepared by in situ cross-link reaction. Solar Energy Materials and Solar Cells, 2009, 93, 2003-2007.	3.0	39
205	High efficiency quasi-solid-state dye-sensitized solar cell based on polyvinyidene fluoride-co-hexafluoro propylene containing propylene carbonate and acetonitrile as plasticizers. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 224-230.	2.0	39
206	Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresource Technology, 2010, 101, 5480-5486.	4.8	39
207	Toward Optimization of Oligothiophene Antennas: New Ruthenium Sensitizers with Excellent Performance for Dye-Sensitized Solar Cells. Chemistry of Materials, 2010, 22, 4392-4399.	3.2	39
208	Tunable Electrofluorochromic Device from Electrochemically Controlled Complementary Fluorescent Conjugated Polymer Films. ACS Applied Materials & Interfaces, 2014, 6, 17402-17409.	4.0	39
209	Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system. Solar Energy Materials and Solar Cells, 2008, 92, 112-119.	3.0	38
210	Dihydrophenanthrene-Based Metal-Free Dyes for Highly Efficient Cosensitized Solar Cells. Organic Letters, 2012, 14, 3612-3615.	2.4	38
211	Benzothiadiazole-based organic dyes with pyridine anchors for dye-sensitized solar cells: effect of donor on optical properties. Tetrahedron, 2015, 71, 4203-4212.	1.0	38
212	MoSe2 nanosheet/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite film as a Pt-free counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2016, 211, 794-803.	2.6	38
213	Defect and Additional Active Sites on the Basal Plane of Manganese-Doped Molybdenum Diselenide for Effective Enzyme Immobilization: In Vitro and in Vivo Real-Time Analyses of Hydrogen Peroxide Sensing. ACS Applied Materials & Interfaces, 2019, 11, 7862-7871.	4.0	38
214	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
215	A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.	3.0	37
216	Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte. Journal of Power Sources, 2011, 196, 6595-6602.	4.0	37

#	Article	IF	CITATIONS
217	High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile. Solar Energy Materials and Solar Cells, 2012, 99, 135-140.	3.0	37
218	Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors and Actuators B: Chemical, 2017, 248, 288-297.	4.0	37
219	A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate. Journal of Solid State Electrochemistry, 2002, 7, 6-10.	1.2	36
220	A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high coloration efficiency. Solar Energy Materials and Solar Cells, 2011, 95, 2238-2245.	3.0	36
221	Anthracene/Phenothiazine Ï€â€Conjugated Sensitizers for Dyeâ€Sensitized Solar Cells using Redox Mediator in Organic and Waterâ€based Solvents. ChemSusChem, 2015, 8, 105-113.	3.6	36
222	Effective suppression of interfacial charge recombination by a 12-crown-4 substituent on a double-anchored organic sensitizer and rotating disk electrochemical evidence. Journal of Materials Chemistry A, 2017, 5, 7586-7594.	5.2	36
223	Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor. Carbon, 2022, 186, 406-415.	5.4	36
224	Fabricating an Amperometric Cholesterol Biosensor by a Covalent Linkage between Poly(3-thiopheneacetic acid) and Cholesterol Oxidase. Sensors, 2009, 9, 1794-1806.	2.1	35
225	Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells. RSC Advances, 2012, 2, 7487.	1.7	35
226	Lowâ€ŧemperature flexible Ti/TiO ₂ photoanode for dyeâ€sensitized solar cells with binderâ€free TiO ₂ paste. Progress in Photovoltaics: Research and Applications, 2012, 20, 181-190.	4.4	35
227	High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: The role of annealing. Journal of Power Sources, 2012, 203, 274-281.	4.0	35
228	Nanocomposite Graphene/Pt Electrocatalyst as Economical Counter Electrode for Dye‧ensitized Solar Cells. ChemElectroChem, 2014, 1, 416-425.	1.7	35
229	Functional tuning of phenothiazine-based dyes by a benzimidazole auxiliary chromophore: an account of optical and photovoltaic studies. RSC Advances, 2014, 4, 53588-53601.	1.7	35
230	Iodideâ€Free Ionic Liquid with Dual Redox Couples for Dyeâ€Sensitized Solar Cells with High Openâ€Circuit Voltage. ChemSusChem, 2015, 8, 1244-1253.	3.6	35
231	Additive Engineering by Bifunctional Guanidine Sulfamate for Highly Efficient and Stable Perovskites Solar Cells. Small, 2020, 16, e2004877.	5.2	35
232	Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe(CN)6]3â^'. Analytica Chimica Acta, 2004, 504, 141-147.	2.6	34
233	Silicaâ^'Titania-Based Organicâ~'Inorganic Hybrid Materials for Photovoltaic Applications. Chemistry of Materials, 2006, 18, 4157-4162.	3.2	34
234	Fabrication of a molecularly imprinted polymer sensor by self-assembling monolayer/mediator system. Analytica Chimica Acta, 2009, 643, 38-44.	2.6	34

#	Article	IF	CITATIONS
235	High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents. Journal of Electroanalytical Chemistry, 2009, 633, 146-152.	1.9	34
236	Enhanced spectral response in polymer bulk heterojunction solar cells by using active materials with complementary spectra. Solar Energy Materials and Solar Cells, 2010, 94, 22-28.	3.0	34
237	Low-Temperature Flexible Photoanode and Net-Like Pt Counter Electrode for Improving the Performance of Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21808-21815.	1.5	34
238	Benzothiadiazole-containing donor–acceptor–acceptor type organic sensitizers for solar cells with ZnO photoanodes. Chemical Communications, 2012, 48, 12071.	2.2	34
239	High performance CdS quantum-dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode. Journal of Power Sources, 2013, 237, 141-148.	4.0	34
240	Trialkylsulfonium and tetraalkylammonium cations-based ionic liquid electrolytes for quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2013, 114, 303-308.	2.6	34
241	TCO-free conducting polymers/carbon cloths as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 24479-24486.	5.2	34
242	Electrospun membranes of imidazole-grafted PVDF-HFP polymeric ionic liquids for highly efficient quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 14215-14223.	5.2	34
243	An amperometric NO2 gas sensor based on Pt/Nafion® Electrode. Sensors and Actuators B: Chemical, 2001, 79, 11-16.	4.0	33
244	Amperometric Detection of Cysteine at an In3+ Stabilized Indium Hexacyanoferrate Modified Electrode. Electroanalysis, 2006, 18, 1306-1312.	1.5	33
245	A comparative study of gel polymer electrolytes based on PVDF-HFP and liquid electrolytes, containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs. Solar Energy Materials and Solar Cells, 2007, 91, 1467-1471.	3.0	33
246	Synthesis and characterization of organic dyes containing 2,7-disubstituted carbazole π-linker. Tetrahedron Letters, 2013, 54, 3985-3989.	0.7	33
247	Structure–Performance Correlations of Organic Dyes with an Electronâ€Deficient Diphenylquinoxaline Moiety for Dyeâ€5ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 10052-10064.	1.7	33
248	Improved exchange reaction in an ionic liquid electrolyte of a quasi-solid-state dye-sensitized solar cell by using 15-crown-5-functionalized MWCNT. Journal of Materials Chemistry, 2011, 21, 18467.	6.7	32
249	Controlling Formation of Silver/Carbon Nanotube Networks for Highly Conductive Film Surface. ACS Applied Materials & Interfaces, 2012, 4, 1449-1455.	4.0	32
250	A photoelectrochromic device based on gel electrolyte with a fast switching rate. Solar Energy Materials and Solar Cells, 2012, 99, 148-153.	3.0	32
251	lonic Liquid with a Dualâ€Redox Couple for Efficient Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 146-153.	3.6	32
252	Biâ€anchoring Organic Dyes that Contain Benzimidazole Branches for Dye‧ensitized Solar Cells: Effects of Ï€â€Spacer and Peripheral Donor Groups. Chemistry - an Asian Journal, 2016, 11, 2564-2577.	1.7	32

#	Article	IF	CITATIONS
253	An indium hexacyanoferrate–tungsten oxide electrochromic battery with a hybrid K+/H+-conducting polymer electrolyte. Solid State Ionics, 2003, 165, 257-267.	1.3	31
254	Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkyl bithiophene group. Journal of Power Sources, 2014, 246, 1-9.	4.0	31
255	Organic dyes containing fluoreneamine donor and carbazole π-linker for dye-sensitized solar cells. Dyes and Pigments, 2015, 123, 154-165.	2.0	31
256	An all-organic solid-state electrochromic device containing poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Cells, 2015, 143, 606-612.	627 Td (f 3.0	uoride-co-he 31
257	Earth Abundant Silicon Composites as the Electrocatalytic Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7037-7046.	4.0	31
258	A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochimica Acta, 2009, 54, 4408-4415.	2.6	30
259	Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells. Journal of Colloid and Interface Science, 2011, 363, 635-639.	5.0	30
260	Fluorene-based organic dyes containing acetylene linkage for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 523-533.	2.0	30
261	Charge transporting enhancement of NiO photocathodes for p-type dye-sensitized solar cells. Electrochimica Acta, 2012, 66, 210-215.	2.6	30
262	Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 20814-20822.	5.2	30
263	TiO 2 nanosheets with highly exposed (001)-facets for enhanced photovoltaic performance of dye-sensitized solar cells. Nano Energy, 2014, 10, 212-221.	8.2	30
264	A panchromatic electrochromic device composed of Ru(ii)/Fe(ii)-based heterometallo-supramolecular polymer. Journal of Materials Chemistry C, 2019, 7, 7554-7562.	2.7	30
265	Correlation between Exciton Lifetime Distribution and Morphology of Bulk Heterojunction Films after Solvent Annealing. Journal of Physical Chemistry C, 2010, 114, 9062-9069.	1.5	29
266	A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 6157-6164.	2.6	29
267	Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. RSC Advances, 2013, 3, 5871.	1.7	29
268	A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 384-394.	5.2	29
269	Double-Wall TiO ₂ Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustainable Chemistry and Engineering, 2018, 6, 3907-3915.	3.2	29
270	Synthesis of Surfactant-Free and Morphology-Controllable Vanadium Diselenide for Efficient Counter Electrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25090-25099.	4.0	29

#	Article	IF	CITATIONS
271	A Pt-free pristine monolithic carbon aerogel counter electrode for dye-sensitized solar cells: up to 20% under dim light illumination. Nanoscale, 2019, 11, 12507-12516.	2.8	29
272	On the amperometric detection and electrocatalytic analysis of ascorbic acid and dopamine using a poly(acriflavine)-modified electrode. Sensors and Actuators B: Chemical, 2009, 140, 58-64.	4.0	28
273	Solid-state dye-sensitized solar cell with a charge transfer layer comprising two ionic liquids and a carbon material. Journal of Materials Chemistry, 2011, 21, 15471.	6.7	28
274	Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8742.	5.2	28
275	Hierarchical TiO _{1.1} Se _{0.9} -wrapped carbon cloth as the TCO-free and Pt-free counter electrode for iodide-based and cobalt-based dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 14079-14091.	5.2	28
276	A dual-functional Pt/CNT TCO-free counter electrode for dye-sensitized solar cell. Journal of Materials Chemistry, 2012, 22, 25311.	6.7	27
277	Effect of trifluoromethyl substituents in benzyl-based viologen on the electrochromic performance: Optical contrast and stability. Solar Energy Materials and Solar Cells, 2019, 200, 110020.	3.0	27
278	Thioalkyl-Functionalized Bithiophene (SBT)-Based Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15071-15079.	4.0	27
279	NO2 gas sensing based on vacuum-deposited TTF–TCNQ thin films. Sensors and Actuators B: Chemical, 2003, 93, 370-378.	4.0	26
280	Preparing core–shell structure of ZnO@TiO2 nanowires through a simple dipping–rinse–hydrolyzation process as the photoanode for dye-sensitized solar cells. Nano Energy, 2013, 2, 609-621.	8.2	26
281	Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 10693.	5.2	26
282	Organic solar cells featuring nanobowl structures. Energy and Environmental Science, 2013, 6, 1192.	15.6	26
283	Hierarchically assembled microspheres consisting of nanosheets of highly exposed (001)-facets TiO ₂ for dye-sensitized solar cells. RSC Advances, 2016, 6, 14178-14191.	1.7	26
284	Prussian Blue Analogue-Derived Metal Oxides as Electrocatalysts for Oxygen Evolution Reaction: Tailoring the Molar Ratio of Cobalt to Iron. ACS Applied Energy Materials, 2020, 3, 11752-11762.	2.5	26
285	A novel potassium ion sensing based on Prussian blue thin films. Sensors and Actuators B: Chemical, 2001, 76, 512-518.	4.0	25
286	On the structural variations of Ru(II) complexes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2005, 87, 357-367.	3.0	25
287	Favorable effects of titanium nitride or its thermally treated version in a gel electrolyte for a quasi-solid-state dye-sensitized solar cell. Journal of Power Sources, 2011, 196, 1665-1670.	4.0	25
288	One-pot synthesis of poly (3,4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor. Nanoscale Research Letters, 2012, 7, 319.	3.1	25

#	Article	lF	CITATIONS
289	Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes. Electrochimica Acta, 2013, 88, 421-428.	2.6	25
290	Enhanced performance of a dye-sensitized solar cell with an amphiphilic polymer-gelled ionic liquid electrolyte. Journal of Materials Chemistry A, 2013, 1, 3055.	5.2	25
291	Microemulsion-controlled synthesis of CoSe 2 /CoSeO 3 composite crystals for electrocatalysis in dye-sensitized solar cells. Materials Today Energy, 2017, 6, 189-197.	2.5	25
292	Prussian Blueâ€Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinumâ€Free Counter Electrodes for Highly Efficient Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 13284-13288.	1.7	25
293	Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co ²⁺ / ³⁺ -Based Redox Couple. ACS Applied Materials & Interfaces, 2020, 12, 44597-44607.	4.0	25
294	Durable Electrochromic Devices Driven at 0.8 V by Complementary Chromic Combination of Metallo-Supramolecular Polymer and Prussian Blue Analogues for Smart Windows with Low-Energy Consumption. ACS Applied Electronic Materials, 2021, 3, 2123-2135.	2.0	25
295	In Situ Low Temperature Polymerization of Bismaleimide for Gel-Type Electrolyte for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 13832-13837.	1.5	24
296	Improving the durability of dye-sensitized solar cells through back illumination. Journal of Power Sources, 2011, 196, 1671-1676.	4.0	24
297	Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte. Solar Energy Materials and Solar Cells, 2011, 95, 1990-1995.	3.0	24
298	Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO_2 photoanodes. Optics Express, 2012, 20, A168.	1.7	24
299	A novel 2,7-diaminofluorene-based organic dye for a dye-sensitized solar cell. Journal of Power Sources, 2012, 215, 122-129.	4.0	24
300	Triarylamineâ€Free Pyrenoimidazoleâ€Containing Organic Dyes with Different Ï€â€Linkers for Dyeâ€Sensitized Solar Cells. Asian Journal of Organic Chemistry, 2015, 4, 164-172.	1.3	24
301	Ultrasound-assisted synthesis of two-dimensional layered ytterbium substituted molybdenum diselenide nanosheets with excellent electrocatalytic activity for the electrochemical detection of diphenylamine anti-scald agent in fruit extract. Ultrasonics Sonochemistry, 2019, 50, 265-277.	3.8	24
302	Boron Nitride/Sulfonated Polythiophene Composite Electrocatalyst as the TCO and Pt-Free Counter Electrode for Dye-Sensitized Solar Cells: 21% at Dim Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 5251-5259.	3.2	24
303	Multimode optoelectrochemical detection of cysteine based on an electrochromic Prussian blue electrodeâ [~] †. Sensors and Actuators B: Chemical, 2008, 130, 418-424.	4.0	23
304	Controlled Growth of Nanofiber Network Hole Collection Layers with Pore Structure for Polymerâ^'Fullerene Solar Cells. Journal of Physical Chemistry C, 2008, 112, 19125-19130.	1.5	23
305	Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation. International Journal of Hydrogen Energy, 2011, 36, 13896-13899.	3.8	23
306	Structural engineering of dipolar organic dyes with an electron-deficient diphenylquinoxaline moiety for efficient dye-sensitized solar cells. Tetrahedron, 2014, 70, 6276-6284.	1.0	23

#	Article	IF	CITATIONS
307	One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells. Materials Today Energy, 2018, 8, 15-21.	2.5	23
308	Metal-based flexible TiO2 photoanode with titanium oxide nanotubes as the underlayer for enhancement of performance of a dye-sensitized solar cell. Electrochimica Acta, 2011, 57, 270-276.	2.6	22
309	The effect of solvent induced crystallinity of polymer layer on poly(3-hexylthiophene)/C70 bilayer solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 419-422.	3.0	22
310	Synthesis and characterization of dianchoring organic dyes containing 2,7-diaminofluorene donors as efficient sensitizers for dye-sensitized solar cells. Organic Electronics, 2013, 14, 3267-3276.	1.4	22
311	Synthesis of cobalt oxide thin films in the presence of various anions and their application for the detection of acetaminophen. Sensors and Actuators B: Chemical, 2013, 182, 429-438.	4.0	22
312	Electrochemical synthesis of a doubleâ€layer film of ZnO nanosheets/nanoparticles and its application for dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 440-451.	4.4	22
313	Synthesis and photovoltaic properties of organic dyes containing N-fluoren-2-yl dithieno[3,2-b:2′,3′-d]pyrrole and different donors. Organic Electronics, 2015, 26, 109-116.	1.4	22
314	N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells. Journal of Power Sources, 2020, 449, 227470.	4.0	22
315	Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors. Sensors and Actuators B: Chemical, 2021, 346, 130505.	4.0	22
316	Enhancing chemiresistor-type NO gas-sensing properties using ethanol-treated lead phthalocyanine thin films. Sensors and Actuators B: Chemical, 2005, 108, 418-426.	4.0	21
317	Three-Dimensional Nanoscale Imaging of Polymer Bulk-Heterojunction by Scanning Electrical Potential Microscopy and C ₆₀ ⁺ Cluster Ion Slicing. Analytical Chemistry, 2009, 81, 8936-8941.	3.2	21
318	Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 675-679.	3.0	21
319	Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate. Analytica Chimica Acta, 2012, 737, 55-63.	2.6	21
320	Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties. Journal of Colloid and Interface Science, 2012, 386, 359-365.	5.0	21
321	High contrast and low-driving voltage electrochromic device containing triphenylamine dendritic polymer and zinc hexacyanoferrate. Solar Energy Materials and Solar Cells, 2014, 125, 261-267.	3.0	21
322	Nitrogen-doped graphene/molybdenum disulfide composite as the electrocatalytic film for dye-sensitized solar cells. Electrochimica Acta, 2016, 211, 164-172.	2.6	21
323	Cobalt-tungsten diselenide-supported nickel foam as a battery-type positive electrode for an asymmetric supercapacitor device: comparison with various MWSe ₂ (M = Ni, Cu, Zn, and) Tj ETQq1	1 Q \$7843	1421gBT /Ov∈
324	Orientation-Adjustable Metal–Organic Framework Nanorods for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 28242-28251.	4.0	21

#	Article	IF	CITATIONS
325	A study on the deposition efficiency, porosity and redox behavior of Prussian blue thin films using an EQCM. Journal of Electroanalytical Chemistry, 2002, 524-525, 286-293.	1.9	20
326	A Strategic Buffer Layer of Polythiophene Enhances the Efficiency of Bulk Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2010, 2, 1281-1285.	4.0	20
327	Enhanced performance of dye-sensitized solar cell with thermally-treated TiN in its TiO2 film prepared at low temperature. Journal of Power Sources, 2011, 196, 1632-1638.	4.0	20
328	Enhanced light-harvesting capability by phenothiazine in ruthenium sensitizers with superior photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 130-139.	6.7	20
329	Improved performance of dye-sensitized solar cells using TiO 2 nanotubes infiltrated by TiO 2 nanoparticles using a dipping–rinsing–hydrolysis process. Journal of Power Sources, 2013, 243, 535-543.	4.0	20
330	Functional tuning of organic dyes containing 2,7-carbazole and other electron-rich segments in the conjugation pathway. RSC Advances, 2015, 5, 17953-17966.	1.7	20
331	Heteroleptic Ruthenium Sensitizers with Hydrophobic Fusedâ€ThioÂphenes for Use in Efficient Dyeâ€ÂSensitized Solar Cells. European Journal of Inorganic Chemistry, 2016, 2016, 1214-1224.	1.0	20
332	Microemulsion-assisted Zinc Oxide Synthesis: Morphology Control and Its Applications in Photoanodes of Dye-Sensitized Solar Cells. Electrochimica Acta, 2016, 210, 483-491.	2.6	20
333	Dye-Sensitized Solar Cells. , 2018, , 270-281.		20
334	Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes. Journal of Materials Chemistry C, 2020, 8, 15322-15330.	2.7	20
335	A High Contrast Hybrid Electrochromic Device Containing PEDOT, Heptyl Viologen, and Radical Provider TEMPO. Journal of the Electrochemical Society, 2010, 157, P75.	1.3	19
336	Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 7999-8004.	2.6	19
337	Fine Tuning the Performance of DSSCs by Variation of the π‧pacers in Organic Dyes that Contain a 2,7â€Ðiaminofluorene Donor. Chemistry - an Asian Journal, 2012, 7, 2942-2954.	1.7	19
338	Control of morphology and size of platinum crystals through amphiphilic polymer-assisted microemulsions and their uses in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 12305.	6.7	19
339	Self-Assembled All-Conjugated Block Copolymer as an Effective Hole Conductor for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2014, 8, 1254-1262.	7.3	19
340	Integration of polyelectrolyte based electrochromic material in printable photovoltaic electrochromic module. Solar Energy Materials and Solar Cells, 2016, 145, 69-75.	3.0	19
341	Incorporating electrospun nanofibers of TEMPO-grafted PVDF-HFP polymer matrix in viologen-based electrochromic devices. Solar Energy Materials and Solar Cells, 2020, 208, 110375.	3.0	19
342	Switching behavior of the Prussian blue–indium hexacyanoferrate electrochromic device using the K+-doped poly-AMPS electrolyte. Solid State Ionics, 2003, 165, 269-277.	1.3	18

#	Article	IF	CITATIONS
343	Integrating an Enzymeâ€Entrapped Conducting Polymer Electrode and a Prereactor in a Microfluidic System for Sensing Glucose. Electroanalysis, 2008, 20, 635-642.	1.5	18
344	Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell. Electrochimica Acta, 2010, 56, 7991-7991.	2.6	18
345	A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. Bioresource Technology, 2012, 116, 502-506.	4.8	18
346	Photovoltaic properties of dye-sensitized solar cells associated with amphiphilic structure of ruthenium complex dyes. Journal of Colloid and Interface Science, 2012, 372, 73-79.	5.0	18
347	Surface modification of TiO ₂ nanotube arrays with Y ₂ O ₃ barrier layer: controlling charge recombination dynamics in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8281-8287.	5.2	18
348	Platinum nanoparticles decorated graphene nanoribbon with eco-friendly unzipping process for electrochemical sensors. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 566-574.	2.7	18
349	An electrochromic device composed of metallo-supramolecular polyelectrolyte containing Cu(I) and polyaniline-carbon nanotube. Solar Energy Materials and Solar Cells, 2014, 126, 219-226.	3.0	17
350	Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications. Electrochimica Acta, 2015, 172, 61-70.	2.6	17
351	Metal–Organic Framework Colloids: Disassembly and Deaggregation. Langmuir, 2016, 32, 6123-6129.	1.6	17
352	Mesoporous anatase-TiO 2 spheres consisting of nanosheets of exposed (001)-facets for [Co(byp) 3] 2+/3+ based dye-sensitized solar cells. Nano Energy, 2016, 22, 136-148.	8.2	17
353	Fused heterocycles possessing novel metal-free organic dyes for dye-sensitized solar cells. Tetrahedron, 2017, 73, 278-289.	1.0	17
354	Electrospun nanofibers composed of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(oxyethylene)-imide imidazolium tetrafluoroborate as electrolytes for solid-state electrochromic devices. Solar Energy Materials and Solar Cells, 2018, 177, 32-43.	3.0	17
355	Fine tuning the absorption and photovoltaic properties of benzothiadiazole dyes by donor-acceptor interaction alternation via methyl position. Electrochimica Acta, 2019, 304, 1-10.	2.6	17
356	Porous organic polymer derived metal-free carbon composite as an electrocatalyst for CO2 reduction and water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 183-190.	2.7	17
357	A novel multifunctional polymer ionic liquid as an additive in iodide electrolyte combined with silver mirror coating counter electrodes for quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 4907-4921.	5.2	17
358	Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows. Nano Energy, 2021, 90, 106575.	8.2	17
359	Synthesis and characterization of crossâ€linkable ruthenium complex dye and its application on dyeâ€sensitized solar cells. Journal of Polymer Science Part A, 2010, 48, 366-372.	2.5	16
360	Synthesis of Co3O4 thin films by chemical bath deposition in the presence of different anions and application to H2O2 sensing. Procedia Engineering, 2011, 25, 847-850.	1.2	16

ΚυΟ-CΗυΑΝ ΗΟ

#	Article	IF	CITATIONS
361	Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors. Sensors, 2011, 11, 8593-8610.	2.1	16
362	Amperometric detection of cholesterol using an indirect electrochemical oxidation method. Steroids, 2011, 76, 1535-1540.	0.8	16
363	Ruthenium complex dye with designed ligand capable of chelating triiodide anion for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 3463.	5.2	16
364	Multifunctional TiO ₂ Microflowers with Nanopetals as Scattering Layer for Enhanced Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cell Performance. ChemElectroChem, 2014, 1, 532-535.	1.7	16
365	A composite catalytic film of Ni-NPs/PEDOT: PSS for the counter electrodes in dye–sensitized solar cells. Electrochimica Acta, 2014, 146, 697-705.	2.6	16
366	A new stable Fe(CN)63â~'/4â^'-immobilized poly(butyl viologen)-modified electrode for dopamine determination. Sensors and Actuators B: Chemical, 2009, 137, 313-319.	4.0	15
367	Efficient bulk heterjunction solar cells based on a low-bandgap polyfluorene copolymers and fullerene derivatives. Organic Electronics, 2009, 10, 1109-1115.	1.4	15
368	Enhanced efficiency of dye-sensitized solar cells with counter electrodes consisting of platinum nanoparticles and nanographites. Electrochimica Acta, 2012, 59, 128-134.	2.6	15
369	Low-temperature and template-free fabrication of cobalt oxide acicular nanotube arrays and their applications in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 4042-4048.	5.2	15
370	ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dye–sensitized solar cells. Journal of Power Sources, 2016, 325, 209-219.	4.0	15
371	Azafluorene Ornamented Thiazine Based Novel Fused Heterocyclic Organic Dyes for Competent Molecular Photovoltaics. Electrochimica Acta, 2017, 246, 1052-1064.	2.6	15
372	Stoichiometry-Controlled Mo <i>_x</i> W _{1–<i>x</i>} Te ₂ Nanowhiskers: A Novel Electrocatalyst for Pt-Free Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 34815-34824.	4.0	15
373	A study of partially irreversible characteristics in a TTF–TCNQ gas sensing systemâ~†. Sensors and Actuators B: Chemical, 2008, 130, 343-350.	4.0	14
374	Fast switching Prussian blue film by modification with cetyltrimethylammonium bromide. Solar Energy Materials and Solar Cells, 2012, 99, 129-134.	3.0	14
375	Highly ordered TiO2 nanotube stamps on Ti foils: Synthesis and application for all flexible dye–sensitized solar cells. Electrochemistry Communications, 2013, 37, 71-75.	2.3	14
376	A platinum film with organized pores for the counter electrode in dye-sensitized solar cells. Journal of Power Sources, 2013, 239, 496-499.	4.0	14
377	Controlling Available Active Sites of Pt-Loaded TiO2 Nanotube-Imprinted Ti Plates for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 3910-3919.	4.0	14
378	Dye-sensitized solar cells containing mesoporous TiO ₂ spheres as photoanodes and methyl sulfate anion based biionic liquid electrolytes. Journal of Materials Chemistry A, 2015, 3, 6383-6391.	5.2	14

#	Article	IF	CITATIONS
379	Electrochemical sensing of anti-inflammatory agent in paramedical sample based on FeMoSe2 modified SPCE: Comparison of various preparation methods and morphological effects. Analytica Chimica Acta, 2019, 1083, 88-100.	2.6	14
380	Comparisons of the electrochromic properties of Poly(hydroxymethyl 3,4-ethylenedioxythiophene) and Poly(3,4- ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films. Solar Energy Materials and Solar Cells, 2019, 202, 110132.	3.0	14
381	Phaseâ€Engineered Weyl Semiâ€Metallic Mo _x W _{1â€x} Te ₂ Nanosheets as a Highly Efficient Electrocatalyst for Dyeâ€Sensitized Solar Cells. Solar Rrl, 2019, 3, 1800314.	3.1	14
382	On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion® Electrode. Sensors, 2003, 3, 290-303.	2.1	13
383	Enhanced performance of a dye-sensitized solar cell with the incorporation of titanium carbide in the TiO2 matrix. Physical Chemistry Chemical Physics, 2010, 12, 9249.	1.3	13
384	Synthesis of hexagonal ZnO clubs with opposite faces of unequal dimensions for the photoanode of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 20999.	1.3	13
385	Synthesis and characterization of cross-linkable ruthenium dye with ion coordinating property for dye-sensitized solar cells. Polymer, 2011, 52, 3318-3324.	1.8	13
386	Dual-color electrochromic films incorporating a periodic polymer nanostructure. RSC Advances, 2012, 2, 4746.	1.7	13
387	Benzenetricarboxamide-cored triphenylamine dendrimer: nanoparticle film formation by an electrochemical method. RSC Advances, 2013, 3, 22219.	1.7	13
388	Electrocatalytic SiC Nanoparticles/PEDOT:PSS Composite Thin Films as the Counter Electrodes of Dye‧ensitized Solar Cells. ChemElectroChem, 2014, 1, 1031-1039.	1.7	13
389	A kinetic study for electrooxidation of NO gas at a Pt/membrane electrode-application to amperometric NO sensor. Sensors and Actuators B: Chemical, 2005, 108, 820-827.	4.0	12
390	On the use of triethylamine hydroiodide as a supporting electrolyte in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1432-1437.	3.0	12
391	Electrochemical reduction of NO2 at a Pt/membrane electrode—Application to amperometric NO2 sensing. Sensors and Actuators B: Chemical, 2009, 136, 32-38.	4.0	12
392	Carbonaceous allotropes modified ionic liquid electrolytes for efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2014, 130, 587-593.	2.6	12
393	Phenothiazinedioxideâ€Conjugated Sensitizers and a Dualâ€TEMPO/lodide Redox Mediator for Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2221-2229.	3.6	12
394	Application of triphenylamine dendritic polymer in a complementary electrochromic device with panchromatic absorption. Solar Energy Materials and Solar Cells, 2015, 143, 174-182.	3.0	12
395	Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB). Catalysis Reviews - Science and Engineering, 2015, 57, 145-191.	5.7	12
396	Enhanced Organic Solar Cell Performance by Lateral Side Chain Engineering on Benzodithiophene-Based Small Molecules. ACS Applied Energy Materials, 2018, 1, 3684-3692.	2.5	12

#	Article	IF	CITATIONS
397	Nonlinear Diffusion Behavior for the Prussian Blue Electrode. II. Interpretation of Variable Diffusivity during the Insertion/Extraction Processes. Journal of the Electrochemical Society, 2002, 149, E40.	1.3	11
398	Incorporation of plastic crystal and transparent UV-cured polymeric electrolyte in a complementary electrochromic device. Solar Energy Materials and Solar Cells, 2014, 126, 213-218.	3.0	11
399	Catalytic and photoelectrochemical performances of Cu–Zn–Sn–Se thin films prepared using selenization of electrodeposited Cu–Zn–Sn metal precursors. Journal of Power Sources, 2015, 286, 47-57.	4.0	11
400	Organic dyes festooned with fluorene and fused thiazine for efficient dye-sensitized solar cells. Electrochimica Acta, 2018, 268, 347-357.	2.6	11
401	Hierarchical urchin-like CoSe ₂ /CoSeO ₃ electro-catalysts for dye-sensitized solar cells: up to 19% PCE under dim light illumination. Journal of Materials Chemistry A, 2019, 7, 26089-26097.	5.2	11
402	Introducing Postmetalation Metal–Organic Framework to Control Perovskite Crystal Growth for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 60125-60134.	4.0	11
403	Nonlinear Diffusion Behavior for the Prussian Blue Electrode: I. Variable Diffusivity Revealed by Potentiostatic Intermittent Titration Technique-Chronoabsorptometry. Journal of the Electrochemical Society, 2001, 148, E282.	1.3	10
404	Enhanced electrodeposition of indium hexacyanoferrate thin films through improved plating solution stability. Journal of Solid State Electrochemistry, 2002, 7, 1-5.	1.2	10
405	Incorporation of a stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device. Solar Energy Materials and Solar Cells, 2009, 93, 2102-2107.	3.0	10
406	On-chip glucose biosensor based on enzyme entrapment with pre-reaction to lower interference in a flow injection system. Sensors and Actuators B: Chemical, 2011, 157, 64-71.	4.0	10
407	Ambipolar Freestanding Triphenylamine/Fullerene Thin-film by Electrochemical Deposition and Its Read-Writable Properties by Electrochemical Treatments. Electrochimica Acta, 2014, 116, 69-77.	2.6	10
408	Effect of Auxiliary Chromophores on the Optical, Electrochemical, and Photovoltaic Properties of Carbazoleâ€Based Dyes. Asian Journal of Organic Chemistry, 2015, 4, 69-80.	1.3	10
409	Synthesis and characterization of thieno[3,4- d]imidazole-based organic sensitizers for photoelectrochemical cells. Dyes and Pigments, 2016, 129, 60-70.	2.0	10
410	Influence of ferrocyanide on the long-term stability of poly(butyl viologen) thin film based electrochromic devices. Solar Energy Materials and Solar Cells, 2019, 200, 110012.	3.0	10
411	An EQCM study for a novel aromatic poly(amine-imide) electrochromic thin film. Solar Energy Materials and Solar Cells, 2008, 92, 146-153.	3.0	9
412	A Novel Gel Electrolyte Based on Polyurethane for Highly Efficient in Dye-sensitized Solar Cells. Journal of Polymer Research, 2016, 23, 1.	1.2	9
413	Efficient gelâ€ŧype electrolyte with bismaleimide via <i>in situ</i> low temperature polymerization in dyeâ€sensitized solar cells. Journal of Polymer Science Part A, 2010, 48, 4950-4957.	2.5	8
414	Carbazole Containing Ruâ€based Photoâ€sensitizer for Dyeâ€sensitized Solar Cell. Journal of the Chinese Chemical Society, 2010, 57, 1127-1130.	0.8	8

#	Article	IF	CITATIONS
415	Electrochemical Preparation of a Nanostructured Poly(amino napthalene sulfonic acid) Electrode Using CTAB as a Soft Template and Its Electrocatalytic Application for the Reduction of Iodate. Electroanalysis, 2012, 24, 325-331.	1.5	8
416	Quantitative Characterization and Mechanism of Formation of Multilength-scale Bulk Heterojunction Structures in Highly Efficient Solution-Processed Small-Molecule Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 16507-16517.	1.5	8
417	Novel metal-free organic dyes possessing fused heterocyclic structural motifs for efficient molecular photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 30105-30116.	1.3	8
418	A novel ionic liquid with stable radical as the electrolyte for hybrid type electrochromic devices. Solar Energy Materials and Solar Cells, 2017, 166, 61-68.	3.0	8
419	Effect of auxiliary donors and position of benzothiadiazole on the optical and photovoltaic properties of dithieno[3,2-b:2′,3′-d]pyrrole-based sensitizers. Solar Energy, 2020, 208, 539-547.	2.9	8
420	Asymmetric Benzotrithiophene-Based Hole Transporting Materials Provide High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, , .	4.0	8
421	Composite Films Based on Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) Conducting Polymer and TiC Nanoparticles as the Counter Electrodes for Flexible Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10NE01.	0.8	8
422	Interpretations of voltammograms in a typical two-electrode cell: application to complementary electrochromic systems. Electrochimica Acta, 2001, 46, 2159-2166.	2.6	7
423	Study on Oxidation State Dependent Electrocatalytic Ability for I ^{â^²} /I ₃ ^{â^²} Redox Reaction of Reduced Graphene Oxides. Electroanalysis, 2014, 26, 147-155.	1.5	7
424	Triazine-branched mono- and dianchoring organic dyes: Effect of acceptor arms on optical and photovoltaic properties. Dyes and Pigments, 2019, 165, 182-192.	2.0	7
425	A study of ion exchange at the poly(butyl viologen)-electrolyte interface by SECM. Electrochimica Acta, 2008, 53, 6244-6251.	2.6	6
426	Synthesis and characterization of naphthalimide-based dyes for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 16565-16580.	1.1	6
427	A complementary electrochromic device composed of nanoparticulated ruthenium purple and Fe(II)-based metallo-supramolecular polymer. Solar Energy Materials and Solar Cells, 2019, 200, 109929.	3.0	6
428	Achieving low-driving voltage electrochromic devices with N-methylphenothiazine derived ionic liquid. Chemical Engineering Journal, 2021, 420, 129821.	6.6	6
429	<title>Influence of charge capacity ratio on the optical attenuation of a tungsten oxide-polyaniline
electrochromic device</title> . , 1999, , .		5
430	General Kinetic Model for Amperometric Sensors Based on Prussian Blue Mediator and Its Analogs: Application to Cysteine Detection. Electroanalysis, 2006, 18, 1313-1321.	1.5	5
431	The roles of anion and solvent transport during the redox switching process at a poly(butyl) Tj ETQq1 1 0.784314	rgBT /O\ 3.0	verlock 10 Tf
432	lon transport across the film of poly(5,6-dimethoxyindole-2-carboxylic acid) in relation to its electrochromic switching: An electrochemical quartz crystal microbalance study. Electrochimica Acta, 2013, 101, 232-237.	2.6	5

#	Article	IF	CITATIONS
433	Enhanced photovoltaic performance of crossâ€linked ruthenium dye with functional crossâ€linkers for dyeâ€sensitized solar cell. Progress in Photovoltaics: Research and Applications, 2014, 22, 1109-1117.	4.4	5
434	Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application. Energy, 2022, 257, 124758.	4.5	5
435	Efficient organic optoelectronics with multilayer structures. Journal of Materials Chemistry, 2012, 22, 1364-1369.	6.7	4
436	New Class of Ionic Liquids for Dye-Sensitized Solar Cells. , 2015, , .		4
437	Organic dyes containing fluorenylidene functionalized phenothiazine donors as sensitizers for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 12392-12404.	1.1	4
438	Effect of Donors on Photophysical, Electrochemical and Photovoltaic Properties of Benzimidazoleâ€Branched Dyes. ChemistrySelect, 2017, 2, 2807-2814.	0.7	4
439	Solution-growth-synthesized Cu(In,Ga)Se 2 nanoparticles in ethanol bath for the applications of dye-sensitized solar cell and photoelectrochemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 136-145.	2.7	4
440	Effect of electron rich π-linkers on the functional properties of dyes featuring dithieno[3,2-b:2′,3′-d]pyrrole donor. Dyes and Pigments, 2019, 160, 614-623.	2.0	4
441	Effect of structural compatibility of dye and hole transport material on performance of solid-state dye-sensitized solar cells. Journal of Power Sources, 2012, 214, 113-118.	4.0	3
442	Eleventh International Meeting on Electrochromism (IME-11). Solar Energy Materials and Solar Cells, 2016, 145, 1.	3.0	3
443	Flexible rewritable electrochromic device with handwriting feature. Solar Energy Materials and Solar Cells, 2020, 217, 110738.	3.0	3
444	Composite Films Based on Poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) Conducting Polymer and TiC Nanoparticles as the Counter Electrodes for Flexible Dye-Sensitized Solar Cells. Japanese Journal of Applied Physics, 0, 51, 10NE01.	0.8	3
445	Design of a Portable Potentiostat for Electrochemical Sensors. , 0, , .		2
446	Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells. , 0, , .		2
447	Solid-State Ionic Liquid Based Electrolytes for Dye-Sensitized Solar Cells. , 0, , .		2
448	Dual Functional Polymer Interlayer for Facilitating Ion Transport and Reducing Charge Recombination in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 33666-33672.	4.0	2
449	Effect of electron-deficient linkers on the physical and photovoltaic properties of dithienopyrrole-based organic dyes. Journal of Materials Science: Materials in Electronics, 2017, 28, 18404-18417.	1.1	2
450	Designing Novel Poly(oxyalkylene)-Segmented Ester-Based Polymeric Dispersants for Efficient TiO2 Photoanodes of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38394-38403.	4.0	2

ARTICLE IF CITATIONS ROOM-TEMPERATURE NITRIC OXIDE GAS SENSING OF PEDOT THIN FILM USING SURFACE PLASMON RESONANCE. Biomedical Engineering - Applications, Basis and Communications, 2009, 21, 395-398. Cholesterol Biosensor Based On Nanoporous Zinc Oxide Modified Electrodes., 2009,,. 452 1 Detection Of Uric Acid Based On Multi-Walled Carbon Nanotubes Polymerized With A Layer Of Molecularly Imprinted PMAA., 2009, , . Fabrication of a Polymer/Mediator Composite Modified Electrode and its Application to 454 1.2 1 Electrochemical Detection of Iodate. Procedia Engineering, 2011, 25, 1453-1456. Novel Polymer Gel Electrolytes with Poly(oxyethylene)-Amidoacid Microstructures for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells. Materials Research Society Symposia 0.1 Proceedings, 2014, 1667, 32. Dithienopyrrole-based dianchoring dyes: Effect of molecular design and donors on the optical and photovoltaic properties. Journal of Luminescence, 2021, 230, 117727. 456 1.5 1 Chemiresistive NO Gas Sensor Based on Zinc Oxide Nanorods. Journal of Bionanoscience, 2008, 2, 0.4 102-108. Organic Dyes Containing Thienylfluorene Conjugation for Solar Cells.. ChemInform, 2005, 36, no. 0.1 458 0 On The Catalytic Role Of MWCNTs For The Electro-reduction Of NO Gas In An Acid Solution., 2009, , . 460 Fabrication of NO[sub x] gas sensors using In[sub 2]O[sub 3]-ZnO composite thin Films., 2009, , . 0 Amperometric Enzyme-based Biosensors for Lowering the Interferences., 2010, , . 461 Synthesizing of a ZnO film with nanosheets structure on Ti foil for flexible dye-sensitized solar cells. 462 0 ,2011,,. TiO<inf>2</inf> compact layer with photonic crystals: Application to back-illuminated dye-sensitized solar cells., 2011,,. Fabrication of nanocatalyst-enhanced enzyme electrode and application in glucose biofuel cells., 2011, 464 0 ,. A biosensor based on a poly(3,4-ethylenedioxythiophene)-Pt modified screen-printed carbon electrode., 2011, , . Enhanced Performance of Dye Sensitized Solar Cell by the Novel Composite TiO2/POEM Photoanodes. 466 0.1 0 Materials Research Society Śymposia Proceedings, 2012, 1442, 19. Electrocatalytic SiC Nanoparticles/PEDOT:PSS Composite Thin Films as the Counter Electrodes of 1.7 Dye-Sensitized Solar Cells. ChemElectroChem, 2014, 1, 961-961. Prussian Blue-Derived Synthesis of Hollow Porous Iron Pyrite Nanoparticles as Platinum-Free Counter 468 Electrodes for Highly Efficient Dye-Sensitized Solar Cells. Chemistry - A European Journal, 2017, 23, 1.7 0 13263-13263.

KUO-CHUAN HO

#	Article	IF	CITATIONS
469	New energy harvesting using conjugated chalconyl-organosiloxyl framework. Materials Chemistry and Physics, 2022, 279, 125751.	2.0	0