Simeon I Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1197359/publications.pdf

Version: 2024-02-01

50170 35952 9,648 104 46 97 citations h-index g-index papers 105 105 105 8291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Individualized Glycemic Goals for Older Adults Are a Moving Target. Diabetes Care, 2022, 45, 1029-1031.	4.3	6
2	SGLT2i Improves Glycemic Control in Patients With Congenital Severe Insulin Resistance. Pediatrics, 2022, 150, .	1.0	6
3	Pharmacological treatment of hyperglycemia in type 2 diabetes. Journal of Clinical Investigation, 2021, 131, .	3.9	102
4	Genetic and functional evidence links a missense variant in <i>B4GALT1</i> to lower LDL and fibrinogen. Science, 2021, 374, 1221-1227.	6.0	14
5	The High Cost of Diabetes Drugs: Disparate Impact on the Most Vulnerable Patients. Diabetes Care, 2020, 43, 2330-2332.	4.3	33
6	Smarter Modeling to Enable a Smarter Insulin. Diabetes, 2020, 69, 1608-1610.	0.3	8
7	YIPF5 mutations cause neonatal diabetes and microcephaly: progress for precision medicine and mechanistic understanding. Journal of Clinical Investigation, 2020, 130, 6228-6231.	3.9	3
8	The complicated clinical course in a case of atypical lipodystrophy after development of neutralizing antibody to metreleptin: treatment with setmelanotide. Endocrinology, Diabetes and Metabolism Case Reports, 2020, 2020, .	0.2	5
9	Letter to the Editor: "Hypertension and Type 2 Diabetes Are Associated With Decreased Inhibition of Dipeptidyl Peptidase-4 by Sitagliptin― Journal of the Endocrine Society, 2020, 4, bvaa005.	0.1	O
10	SGLT2 inhibitors as adjunctive therapy for type 1 diabetes: balancing benefits and risks. Lancet Diabetes and Endocrinology,the, 2019, 7, 949-958.	5.5	69
11	Sodium–Glucose Cotransporter 2 Inhibitors: A Case Study in Translational Research. Diabetes, 2019, 68, 1109-1120.	0.3	38
12	Sodium–Glucose Cotransporter-2 Inhibitors: Lack of a Complete History Delays Diagnosis. Annals of Internal Medicine, 2019, 171, 421.	2.0	8
13	Increased usual physical activity is associated with a blunting of the triglyceride response to a high-fat meal. Journal of Clinical Lipidology, 2019, 13, 109-114.	0.6	9
14	Insulin: still a miracle after all these years. Journal of Clinical Investigation, 2019, 129, 3045-3047.	3.9	4
15	GLP-1 receptor agonists: differentiation within the class. Lancet Diabetes and Endocrinology,the, 2018, 6, 83-85.	5.5	30
16	Monocyte DPP4 Expression in Human Atherosclerosis Is Associated With Obesity and Dyslipidemia. Diabetes Care, 2018, 41, e1-e3.	4.3	9
17	Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight, 2018, 3, .	2.3	96
18	Insulin Access and Affordability Working Group: Conclusions and Recommendations. Diabetes Care, 2018, 41, 1299-1311.	4.3	210

#	Article	lF	Citations
19	Adverse effects of SGLT2 inhibitors on bone health. Nature Reviews Nephrology, 2018, 14, 473-474.	4.1	42
20	Cardiovascular outcome trials of diabetes drugs: lessons learned. Journal of Clinical Investigation, 2018, 128, 893-896.	3.9	9
21	Familial Hypercholesterolemia and Type 2 Diabetes in the Old Order Amish. Diabetes, 2017, 66, 2054-2058.	0.3	28
22	Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. Journal of Biological Chemistry, 2017, 292, 12339-12350.	1.6	28
23	Ketoacidosis associated with SGLT2 inhibitor treatment: Analysis of FAERS data. Diabetes/Metabolism Research and Reviews, 2017, 33, e2924.	1.7	147
24	Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. ELife, 2017, 6, .	2.8	60
25	Effect of Leptin Administration on Circulating Apolipoprotein CIII levels in Patients With Lipodystrophy. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1790-1797.	1.8	10
26	Diabetic ketoacidosis, sodium glucose transporter-2 inhibitors and the kidney. Journal of Diabetes and Its Complications, 2016, 30, 1162-1166.	1.2	28
27	Response to the Letter: Comment to letter by Segar L Journal of Clinical Endocrinology and Metabolism, 2016, 101, L29-L29.	1.8	0
28	Metabolic syndrome: an ill wind that blows some good?. Diabetes/Metabolism Research and Reviews, 2015, 31, 344-345.	1.7	1
29	Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes and Endocrinology,the, 2015, 3, 8-10.	5.5	223
30	SGLT2 Inhibitors May Predispose to Ketoacidosis. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2849-2852.	1.8	411
31	The Dual Peroxisome Proliferator-Activated Receptor $\hat{l}\pm /\hat{l}^3$ Activator Muraglitazar Prevents the Natural Progression of Diabetes in db/db Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 107-115.	1.3	16
32	Intensive, Long-Term Plasma Exchange Therapy for Severe Hypertriglyceridemia in Acquired Generalized Lipoatrophy. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 380-384.	1.8	30
33	Leptin-Replacement Therapy for Lipodystrophy. New England Journal of Medicine, 2002, 346, 570-578.	13.9	1,130
34	AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nature Genetics, 2002, 31, 21-23.	9.4	475
35	Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. Journal of Clinical Investigation, 2002, 109, 1345-1350.	3.9	373
36	Sorting Nexin 6, a Novel SNX, Interacts with the Transforming Growth Factor- \hat{l}^2 Family of Receptor Serine-Threonine Kinases. Journal of Biological Chemistry, 2001, 276, 19332-19339.	1.6	119

#	Article	lF	CITATIONS
37	Insulin Receptor Substrate-1 Pleckstrin Homology and Phosphotyrosine-binding Domains Are Both Involved in Plasma Membrane Targeting. Journal of Biological Chemistry, 2001, 276, 40795-40802.	1.6	31
38	Identification and Characterization of SNX15, a Novel Sorting Nexin Involved in Protein Trafficking. Journal of Biological Chemistry, 2001, 276, 5074-5084.	1.6	75
39	Activation of Serum- and Glucocorticoid-induced Protein Kinase (Sgk) by Cyclic AMP and Insulin. Journal of Biological Chemistry, 2001, 276, 9406-9412.	1.6	120
40	Treatment of Lipodystrophy with Troglitazone. Annals of Internal Medicine, 2001, 134, 1153.	2.0	0
41	Lipoatrophy syndromes: when â€~too little fat' is a clinical problem. Pediatric Diabetes, 2000, 1, 155-168.	1.2	18
42	Overexpression of a Novel Sorting Nexin, SNX15, Affects Endosome Morphology and Protein Trafficking. Traffic, 2000, 1, 904-916.	1.3	47
43	Characterization of Drosophila Insulin Receptor Substrate. Journal of Biological Chemistry, 2000, 275, 23346-23354.	1.6	34
44	Rational design of peptide agonists of cell-surface receptors. Trends in Pharmacological Sciences, 2000, 21, 9-10.	4.0	2
45	Mutational and Haplotype Analyses of Families with Familial Partial Lipodystrophy (Dunnigan Variety) Reveal Recurrent Missense Mutations in the Globular C-Terminal Domain of Lamin A/C. American Journal of Human Genetics, 2000, 66, 1192-1198.	2.6	260
46	Lipoatrophy Revisited. Trends in Endocrinology and Metabolism, 2000, 11, 410-416.	3.1	193
47	Genetically Defined Forms of Diabetes in Children. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4390-4396.	1.8	31
48	A Gene for Congenital Generalized Lipodystrophy Maps to Human Chromosome 9q34. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3390-3394.	1.8	167
49	Interaction of Insulin Receptor Substrate 3 with Insulin Receptor, Insulin Receptor-related Receptor, Insulin-like Growth Factor-1 Receptor, and Downstream Signaling Proteins. Journal of Biological Chemistry, 1999, 274, 15262-15270.	1.6	40
50	Subcellular Localization and Internalization of the Four Human Leptin Receptor Isoforms. Journal of Biological Chemistry, 1999, 274, 21416-21424.	1.6	120
51	Deconstructing Type 2 Diabetes. Cell, 1999, 97, 9-12.	13.5	290
52	Action of Insulin Receptor Substrate-3 (IRS-3) and IRS-4 to Stimulate Translocation of GLUT4 in Rat Adipose Cells. Molecular Endocrinology, 1999, 13, 505-514.	3.7	56
53	Syndromes Associated with Insulin Resistance and Acanthosis Nigricans. Journal of Basic and Clinical Physiology and Pharmacology, 1998, 9, 419-439.	0.7	34
54	Identification of a Family of Sorting Nexin Molecules and Characterization of Their Association with Receptors. Molecular and Cellular Biology, 1998, 18, 7278-7287.	1.1	233

#	Article	IF	Citations
55	Physiological Role of Akt in Insulin-Stimulated Translocation of GLUT4 in Transfected Rat Adipose Cells. Molecular Endocrinology, 1997, 11, 1881-1890.	3.7	332
56	Insulin Receptor Substrate-2 (IRS-2) Can Mediate the Action of Insulin to Stimulate Translocation of GLUT4 to the Cell Surface in Rat Adipose Cells. Journal of Biological Chemistry, 1997, 272, 29829-29833.	1.6	46
57	Dual Role of a Dileucine Motif in Insulin Receptor Endocytosis. Journal of Biological Chemistry, 1997, 272, 21685-21691.	1.6	58
58	Four Mutant Alleles of the Insulin Receptor Gene Associated with Genetic Syndromes of Extreme Insulin Resistance. Biochemical and Biophysical Research Communications, 1997, 237, 516-520.	1.0	24
59	Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null Alleles. Cell, 1997, 88, 561-572.	13.5	517
60	Cloning of the chicken insulin receptor substrate 1 gene. Gene, 1996, 178, 51-55.	1.0	20
61	Effects of Overexpressing Wild-Type and Mutant PDGF Receptors on Translocation of GLUT4 in Transfected Rat Adipose Cells. Biochemical and Biophysical Research Communications, 1996, 226, 587-594.	1.0	32
62	Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genetics, 1996, 12, 106-109.	9.4	554
63	Homozygosity for a null allele of the insulin receptor gene in a patient with leprechaunism. Human Mutation, 1995, 6, 17-22.	1.1	35
64	Two mutant alleles of the insulin receptor gene in a family with a genetic form of insulin resistance: a 10 base pair deletion in exon 1 and a mutation substituting serine for asparagine-462. Human Genetics, 1995, 95, 174-182.	1.8	22
65	Insulin-induced Activation of Phosphatidylinositol (PI) 3-Kinase. Journal of Biological Chemistry, 1995, 270, 30018-30022.	1.6	11
66	Tyrosine Phosphorylation of Insulin Receptor Substrate-1 in Vivo Depends upon the Presence of Its Pleckstrin Homology Region. Journal of Biological Chemistry, 1995, 270, 18083-18087.	1.6	97
67	Insulin signal transduction pathways. Trends in Endocrinology and Metabolism, 1994, 5, 369-376.	3.1	41
68	Mutagenesis of Phe381 and Phe382 in the extracellular domain of the insulin receptor: effects on receptor biosynthesis, processing, and ligand-dependent internalization. FEBS Letters, 1994, 341, 104-108.	1.3	1
69	Absence of insulin receptor gene mutations in three insulin-resistant women with the polycystic ovary syndrome. Metabolism: Clinical and Experimental, 1994, 43, 1568-1574.	1.5	63
70	Paradoxical biological effects of overexpressed insulin-like growth factor-1 receptors in chinese hamster ovary cells. Journal of Cellular Physiology, 1993, 156, 145-152.	2.0	21
71	Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nature Genetics, 1993, 5, 71-73.	9.4	117
72	Substitution of Leu for Pro-193 in the insulin receptor in a patient with a genetic form of severe insulin resistance. Human Molecular Genetics, 1993, 2, 1437-1441.	1.4	23

#	Article	IF	CITATIONS
73	GENETIC BASIS OF ENDOCRINE DISEASE 1 Molecular Genetics of Insulin Resistant Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 1158-1163.	1.8	54
74	Unusual Forms of Insulin Resistance. Annual Review of Medicine, 1991, 42, 373-379.	5.0	19
75	A Mutation in the Tyrosine Kinase Domain of the Insulin Receptor Associated with Insulin Resistance in an Obese Woman*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 894-901.	1.8	77
76	Structural and Functional Analysis of the Insulin Receptor Promoter. Molecular Endocrinology, 1990, 4, 647-656.	3.7	43
77	Two Unrelated Patients with Familial Hyperproinsulinemia due to a Mutation Substituting Histidine for Arginine at Position 65 in the Proinsulin Molecule: Identification of the Mutation by Direct Sequencing of Genomic Deoxyribonucleic Acid Amplified by Polymerase Chain Reaction. Journal of Clinical Endocrinology and Metabolism. 1990. 71. 164-169.	1.8	35
78	The Amino Acid Sequence of the Insulin Receptor Is Normal in an Insulin-Resistant Pima Indian*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 1155-1166.	1.8	54
79	Mutations in Insulin-Receptor Gene in Insulin-Resistant Patients. Diabetes Care, 1990, 13, 257-279.	4.3	219
80	Mutations of the human insulin receptor gene. Trends in Endocrinology and Metabolism, 1990, 1 , $134-139$.	3.1	13
81	Hepatocyte plasma membrane ecto-ATPase (pp120HA4) is a substrate for tyrosine kinase activity of the insulin receptor. Biochemical and Biophysical Research Communications, 1990, 166, 562-566.	1.0	110
82	Atypical Antiinsulin Receptor Antibodies in a Patient With Type B Insulin Resistance and Scleroderma. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 227-231.	1.8	19
83	Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science, 1989, 245, 66-68.	6.0	218
84	pp-120: A common endogenous substrate for insulin and IGF-1 receptor-associated tyrosine kinase activity in the highly malignant AS-30D rat hepatoma cells. Biochemical and Biophysical Research Communications, 1989, 160, 168-173.	1.0	11
85	Use of polymerase chain reaction catalyzed by Taq DNA polymerase for site-specific mutagenesis. Gene, 1989, 76, 161-166.	1.0	146
86	Autoantibodies to the insulin receptor as a cause of autoimmune hypoglycemia in systemic lupus erythematosus. American Journal of Medicine, 1988, 84, 334-338.	0.6	45
87	Defects in Human Insulin Receptor Gene Expression. Molecular Endocrinology, 1988, 2, 242-247.	3.7	47
88	Rat liver membranes contain a 120 kDa glycoprotein which serves as a substrate for the tyrosine kinases of the receptors for insulin and epidermal growth factor. FEBS Letters, 1987, 212, 141-144.	1.3	24
89	Insulin stimulated protein phosphorylation in human plasma liver membranes: Detection of endogenous or plasma membrane associated substrates for insulin receptor kinase. Biochemical and Biophysical Research Communications, 1987, 149, 1008-1016.	1.0	15
90	Genetics of the Insulin Receptor Defect in a Patient with Extreme Insulin Resistance*. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 1130-1135.	1.8	27

#	Article	IF	Citations
91	[51] Assay of antibodies directed against cell surface receptors. Methods in Enzymology, 1985, 109, 656-667.	0.4	11
92	Insulin-Stimulated Receptor Phosphorylation Appears Normal in Cultured Epstein-Barr Virus-Transformed Lymphocyte Cell Lines Derived from Patients with Extreme Insulin Resistance*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 381-386.	1.8	22
93	Anti-receptor Antibodies Mimic the Effect of Insulin to Down-Regulate Insulin Receptors in Cultured Human Lymphoblastoid (IM-9) Cells. Journal of Clinical Endocrinology and Metabolism, 1984, 58, 182-186.	1.8	55
94	Tyrosine Kinase Activity of the Insulin Receptor of Patients with Type A Extreme Insulin Resistance: Studies with Circulating Mononuclear Cells and Cultured Lymphocytes. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 1152-1158.	1.8	73
95	Unique Features of the Insulin Receptor in Rat Brain. Journal of Neurochemistry, 1984, 43, 1302-1309.	2.1	102
96	The insulin-stimulated receptor kinase is a tyrosine-specific casein kinase. FEBS Journal, 1983, 137, 631-637.	0.2	29
97	11 Insulin receptors in normal and disease states. Clinics in Endocrinology and Metabolism, 1983, 12, 191-219.	1.8	44
98	Insulin stimulates phosphorylation of serine residues in soluble insulin receptors. Biochemical and Biophysical Research Communications, 1983, 116, 1129-1135.	1.0	54
99	Decreased Insulin Binding to Cultured Cells from a Patient with the Rabson-Mendenhall Syndrome: Dichotomy between Studies with Cultured Lymphocytes and Cultured Fibroblasts*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 856-861.	1.8	57
100	Decreased Insulin Binding in Cultured Lymphocytes from Two Patients with Extreme Insulin Resistance*. Journal of Clinical Endocrinology and Metabolism, 1982, 54, 919-930.	1.8	109
101	Extreme Insulin Resistance in Association with Abnormally High Binding Affinity of Insulin Receptors from a Patient with Leprechaunism: Evidence for a Defect Intrinsic to the Receptor. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 1108-1113.	1.8	54
102	Hypoglycemia Associated with Antibodies to the Insulin Receptor. New England Journal of Medicine, 1982, 307, 1422-1426.	13.9	144
103	Insulin Resistance Associated with Androgen Excess in Women with Autoantibodies to the Insulin Receptor. Annals of Internal Medicine, 1982, 97, 851.	2.0	134
104	Regulation of lipogenesis in adipose tissue: The significance of the activation of pyruvate dehydrogenase by insulin. Archives of Biochemistry and Biophysics, 1974, 164, 12-19.	1.4	38